PTA 数据结构与算法题目集 7-1 最大子列和问题(联机算法)(C语言)

问题描述
问题描述输入格式:

输入第1行给出正整数K (≤100000);第2行给出K个整数,其间以空格分隔。

输出格式:

在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。

输入示例:

6
-2 11 -4 13 -5 -2

输出示例:

20

源代码答案展示:

#include<stdio.h>
int main()
{
    int n,i,j;
    scanf("%d",&n);
    int array[n];
    int max=0,number=0;//max用来输出最大子列和,number是统计子列中负数的个数
    int sum;
    for(i=0;i<n;i++)
    {
        scanf("%d",&array[i]);
        //scanf("%d",array+i);两种写法等价
        max+=array[i];
        if(array[i]<0) number++; 
    }
    if (number==n)
    {
        printf("0");
        return 0;
    }//如果都是负数,则返回0
    for(i=0;i<n;i++)
    {
### PTA 数据结构算法 题目 7-51 解析 #### 题目概述 题目编号为7-51数据结构算法练习题通常涉及较为复杂的逻辑运算以及特定的数据处理方法。这类题目旨在考察学生对于高级数据结构的理解程度及其应用能力。 #### 主要知识点覆盖 该类题目往往聚焦于但不限于以下几个方面: - **图论**:特别是关于连通性最优化路径的选择问题[^1]。 - **动态规划**:解决具有重叠问题特性的计算难题,提高效率的同时减少冗余计算。 - **贪心算法**:针对某些可以逐步构建最优解的情况适用此策略来简化求解过程。 #### 示例解答思路(假设) 考虑到具体题目细节未给出,这里提供一种基于上述领域内常见模式的通用解决方案框架: 当面对一个涉及到多个节点间关系的问题时,可以通过建立加权无向图模型来进行分析。利用邻接矩阵或者边表表示法存储这些连接信息,并采用Prim或Kruskal算法寻找最小生成树(MST)。这不仅能够有效地降低整体成本,而且有助于理解整个系统的拓扑特征。 ```cpp // 假设使用C++编写并实现了Kruskal算法找到给定图形中的MST #include <iostream> #include <vector> using namespace std; struct Edge { int src, dest, weight; }; class Graph { public: vector<Edge> edges; int V, E; void addEdge(int u, int v, int w); int find(vector<int>& parent, int i); void Union(vector<int>& parent, int x, int y); void KruskalMST(); }; void Graph::addEdge(int u, int v, int w) { edges.push_back({u, v, w}); } int Graph::find(vector<int>& parent, int i) { if (parent[i] == -1) return i; return find(parent, parent[i]); } void Graph::Union(vector<int>& parent, int x, int y) { int xset = find(parent, x); int yset = find(parent, y); parent[xset] = yset; } void Graph::KruskalMST() { // 实现Kruskal算法的具体逻辑... } ``` 请注意以上代码仅为示意性质,在实际编程环境中需根据具体的业务需求调整函数定义及内部实现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值