- 博客(31)
- 收藏
- 关注
原创 Kears 获取卷积中间层输出
1.Sequentialget_last_output=K.function([model.layers[0].input],[model.layers[-1].output])permute_layer_output = get_last_output([x_test1])[0]可以指定是训练还是测试当有Dropout和BN层时不推荐使用该方法2.Modelmiddle = Model(inputs=model.input,outputs=model.get_layer('dense').o
2022-04-18 17:07:15
187
原创 论文进展记录
2021.11.21正在试验不同CNN网络结构,根据WDCNN论文所说,1DCNN使用2层filters=3的神经网络所获得的感受野仅为5*1,视觉领域的网络结构不适应一维卷积前几天试验中加入dropout层导致准确率非常低,应该是由于欠拟合引起的,由于epoch=20,训练次数不够又加上了dropout导致欠拟合,当epoch次数提上去时,准确率有了明显的提升。[1] 找一维卷积相关论文,看网络结构该如何搭建[2] 看老师发的论文,周五找老师...
2021-11-21 21:14:21
1952
1
原创 numpy基本(1)
基本属性1. 列表转换成数组array=np.array()2.查看数组维度print(array.ndim)3.查看形状和大小print(array.shape)print(array.size
2021-08-02 21:18:35
81
原创 一些报错的tips(持续更新)
1.pandas无法打开.xlsx文件from openpyxl import Workbook,load_workboodata=pd.read_excel('D:/accidents.xlsx',index_col='DATE',engine='openpyxl')
2021-06-25 14:44:35
96
原创 saver 保存读取
用tensorflow 保存变量import tensorflow as tfimport numpy as np# save to file#remember to define the same dtype and shape when restoreW=tf.Variable([[1, 2, 3], [4, 5, 6]], dtype=tf.float32, name='Weights') # 最好给个dtypeb=tf.Variable([[1, 2, 3]], dtype=tf.f
2021-05-30 14:12:03
163
原创 时间序列ARMA和ARIMA模型(一)
读取数据(tushare数据)import tushare as tsts.set_token('3fd7b7e92cd059d0f192177e61afd8da6f84e3476cff01f076d5e295')#在tushare官网注册即可获得pro=ts.pro_api()#初始化pro接口data=pro.daily(ts_code='00000.1sz',start_data='20210428',end_data='20210428')#根据时间段获取招商银行日交易数据data.s
2021-05-06 11:27:18
807
原创 jupyter notebook导入tushare失败
问题:在cmd中已经输入了pip install tushare,且安装成功,但是在jupyter notebook 输入import tushare as ts,显示no model named ‘tushare’方案:大胆点,直接暴力在jupyter notebook中输入:pip install tusharerestart kernel后再输入import tushare as ts搞定!...
2021-04-28 10:18:57
1385
3
原创 CNN,2 conv layer,2 pooling layer
import tensorflow as tfimport numpy as npfrom tensorflow.examples.tutorials.mnist import input_data#number 1 to 10 datamnist=input_data.read_data_sets('MNIST_data',one_hot=True)def compute_accuracy(v_xs,v_ys): global prediction #全局变量 y_pre=s
2021-04-11 22:11:18
240
原创 classification
仅有输入和输出层,无隐藏层import tensorflow as tfimport numpy as npfrom tensorflow.examples.tutorials.mnist import input_datamnist=input_data.read_data_sets('MNIST_data',one_hot=True)def compute_accuracy(v_xs,v_ys): global prediction #全局变量 y_pre=sess.r
2021-04-11 10:32:00
77
原创 dropout防止overfitting
#使用sklearn之前要装scikit-learn这个包from sklearn.datasets import load_digitsfrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import LabelBinarizer#load datadigits=log_digits()X=digits.data #加载从0到9的digits datey=digits.target #
2021-04-09 21:51:29
110
原创 tensorboard 添加histogram、scalar
添加输入def add_layer(inputs,in_size,out_size,n_layer,activation_function=None): layer_name='layer%s'%n_layer#输出结果为layern_layer,以字符串形式编辑神经层 tf.summary.histogram(layer_name+'weights',Weights)#纵轴是weights,表示的是Weights tf.summary.histogram(layer_name+'.
2021-04-05 22:24:46
415
原创 tensorboard可视化
inputs可视化with tf.name_scope('inputs'): xs=tf.placeholder(tf.float32,[None,1],name='x_input')#None是无论给多少sample都OK ys=tf.placeholder(tf.float32,[None,1],name='y_input')hidden layer可视化def add_layer(inputs,in_size,out_size,activation_function=.
2021-04-05 20:50:01
182
2
原创 可视化plot result
import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt#添加神经层def add_layer(inputs,in_size,out_size,activation_function=None): Weights=tf.Variable(tf.random_normal([in_size,out_size]))#用random比用0好 biases=tf.Variable(tf.zeros
2021-04-02 13:02:08
1107
原创 创建简单神经网络
import tensorflow as tfimport numpy as np#添加神经层def add_layer(inputs,in_size,out_size,activation_function=None): Weights=tf.Variable(tf.random_normal([in_size,out_size]))#用random比用0好 biases=tf.Variable(tf.zeros([1,out_size])+0.1) #biases推荐的值不为
2021-04-02 11:35:07
145
3
原创 add layer
import tensorflow as tf#添加神经层def add_layer(inputs,in_size,out_size,activation_function=none) Weights=tf.Variable(tf.random_normal[in_size,out_size])#用random比用0好 biases=tf.Variable(tf.zeros([1,out_size])+0.1) #biases推荐的值不为0 Wx_plus_b=tf.matm
2021-04-01 21:57:56
193
原创 placeholder&feed_dict
import tensorflow as tfinput1=tf.placeholder(tf.float32)#一般处理float 32input2=tf.placeholder(tf.float32)output=tf.multiply(input1,input2)with tf.Session() as sess: print(sess.run(output,feed_dict={input1:[7.],input2:[2.]})) #placeholder用于占位,fee
2021-04-01 21:02:18
103
原创 variable in python
import tensorflow as tfstate=tf.Variable(0,name='counter')#定义变量state,初始值为0,名字是'counter'one=tf.constant(1)new_value=tf.add(state,one)update=tf.assign(state,new_value)#把new_value的值赋给stateinit=tf.initialize_all_variables()#定义变量必备with tf.Session() as se
2021-04-01 16:27:23
115
原创 tensorflow中session用法
import tensorflow as tfmatrix_1=tf.constant([[3,3]])#(1,2)矩阵matrix_2=tf.constant([[2],[2]])product=tf.matmul(matrix_1,matrix_2)#矩阵乘法,np中用np.dot() 3*2+3*2#method 1sess=tf.Session()result=sess.run(product)#sess 指向productprint(result)sess.close()#这步骤
2021-03-31 22:31:05
221
原创 简单神经网络,来自莫烦
import tensorflow as tfimport numpy as np#creat datax_data=np.random.rand(100).astype(np.float32)y_data=x_data*0.1+0.3#创建y=0.1x+0.3###creat tensorflow structure start###Weights=tf.Variable(tf.random_uniform([1],-1.0,1.0))#random,服从[-1,1]正态分布biase
2021-03-28 18:34:58
87
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人