硬件设计完成,下面就要进行软件开发了,本篇主要介绍串口模块、按键模块的初始化及功能测试。
程序开发前我习惯查看原理图把所有外设对应的管脚全部列出来,方便后续开发时查看。
串口模块
串口模块管脚
串口号 | 管脚 |
---|---|
USART1 TXD | PA9 |
USART1 RXD | PA10 |
USART3 TXD | PD8 |
USART3 RXD | PD9 |
查看芯片规格书可知 PA9和PA10的默认功能为串口1,PD8和PD9需要重定义为串口3使用。
管脚定义:
#define UART1_TXD_GPIO_PORT GPIOA
#define UART1_TXD_GPIO_CLK RCC_APB2Periph_GPIOA
#define UART1_TXD_GPIO_PIN GPIO_Pin_9
#define UART1_TXD_GPIO_MODE GPIO_Mode_AF_PP
#define UART1_RXD_GPIO_PORT GPIOA
#define UART1_RXD_GPIO_CLK RCC_APB2Periph_GPIOA
#define UART1_RXD_GPIO_PIN GPIO_Pin_10
#define UART1_RXD_GPIO_MODE GPIO_Mode_IN_FLOATING
#define UART3_TXD_GPIO_PORT GPIOD
#define UART3_TXD_GPIO_CLK RCC_APB2Periph_GPIOD
#define UART3_TXD_GPIO_PIN GPIO_Pin_8
#define UART3_TXD_GPIO_MODE GPIO_Mode_AF_PP
#define UART3_RXD_GPIO_PORT GPIOD
#define UART3_RXD_GPIO_CLK RCC_APB2Periph_GPIOD
#define UART3_RXD_GPIO_PIN GPIO_Pin_9
#define UART3_RXD_GPIO_MODE GPIO_Mode_IPU
本文使用中断方式接收和发送,串口和串口中断初始化代码如下:
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
//UART1 管脚配置:时钟、模式
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
GPIO_InitStructure.GPIO_Pin = UART1_RXD_GPIO_PIN;
GPIO_InitStructure.GPIO_Mode = UART1_RXD_GPIO_MODE;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz;
GPIO_Init(UART1_RXD_GPIO_PORT, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = UART1_TXD_GPIO_PIN;
GPIO_InitStructure.GPIO_Mode = UART1_TXD_GPIO_MODE;
GPIO_Init(UART1_TXD_GPIO_PORT, &GPIO_InitStructure);
USART_InitStructure.USART_BaudRate = 9600;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART1, &USART_InitStructure);
//配置nvic向量表
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
/* Enable the USARTy Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Enable USART1 Receive and Transmit interrupts */
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);
USART_ITConfig(USART1, USART_IT_TXE, DISABLE); //一开始就是要关闭
/* Enable USART */
USART_Cmd(USART1, ENABLE);
gb_needDealUart1Data = 0;
uart1DelayTimer = 0;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE);
GPIO_PinRemapConfig(GPIO_FullRemap_USART3, ENABLE);
//UART3 管脚配置:时钟、模式
GPIO_InitStructure.GPIO_Pin = UART3_RXD_GPIO_PIN;
GPIO_InitStructure.GPIO_Mode = UART3_RXD_GPIO_MODE;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz;
GPIO_Init(UART3_RXD_GPIO_PORT, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = UART3_TXD_GPIO_PIN;
GPIO_InitStructure.GPIO_Mode = UART3_TXD_GPIO_MODE;
GPIO_Init(UART3_TXD_GPIO_PORT, &GPIO_InitStructure);
USART_InitStructure.USART_BaudRate = 115200;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART3, &USART_InitStructure);
//配置nvic向量表
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
/* Enable the USARTy Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Enable USART3 Receive and Transmit interrupts */
USART_ITConfig(USART3, USART_IT_RXNE, ENABLE);
USART_ITConfig(USART3, USART_IT_TXE, DISABLE); //一开始就是要关闭
/* Enable USART */
USART_Cmd(USART3, ENABLE);
gb_needDealUart3Data = 0;
初始化的时候别忘记串口3的remap
GPIO_PinRemapConfig(GPIO_FullRemap_USART3, ENABLE);
串口收发中断处理,以串口3为例:
void USART3_IRQHandler(void)
{
u8 d;
if (USART_GetFlagStatus(USART3, USART_FLAG_RXNE))
{
/* Read one byte from the receive data register */
d = USART_ReceiveData(USART3);
uart3infifo_DataIn(d);
uart3DelayTimer = UART3_DATA_DELAY;
gb_needDealUart3Data = 0;
}
else if (USART_GetFlagStatus(USART3, USART_FLAG_TXE))
{
if (uart3outfifo_count > 0)
{
/* Write one b yte to the transmit data register */
USART_SendData(USART3, uart3outfifo_DataOut()); //顺便清除flag_TXE
}
else
{
/* Disable the USARTy Transmit interrupt */
USART_ITConfig(USART3, USART_IT_TXE, DISABLE); //实际上,发送为空的标志还在,只是关闭中断
}
}
}
串口中断中收到数据先进FIFO,等一个数据包接收完后进入处理。需要发送数据,把数据填入fifo,中断里自动发送。我一般都是采用这种中断加fifo的收发方式。中断就像是后台操作一样,在主程序的流程中,不用刻意去关注中断方式发送了没有,何时接收等,而查询方式是在主程序流程中不断查看是否接收到了数据,一般用while不断循环查看。中断方式可以更高效利用CPU ,节省CPU的时间,查询就会增加CPU负担。
按键模块
查看原理图,矩阵按键管脚如下
功能 | 管脚 |
---|---|
第一行 | PE8 |
第二行 | PE9 |
第一列 | PE10 |
第二列 | PE11 |
矩阵键盘管脚定义及初始化:
#define ROW0_GPIO_PORT GPIOE
#define ROW0_GPIO_PIN GPIO_Pin_8
#define ROW0_GPIO_MODE GPIO_Mode_IPU
#define ROW1_GPIO_PORT GPIOE
#define ROW1_GPIO_PIN GPIO_Pin_9
#define ROW1_GPIO_MODE GPIO_Mode_IPU
#define COL0_GPIO_PORT GPIOE
#define COL0_GPIO_PIN GPIO_Pin_10
#define COL0_GPIO_MODE GPIO_Mode_Out_PP
#define COL1_GPIO_PORT GPIOE
#define COL1_GPIO_PIN GPIO_Pin_11
#define COL1_GPIO_MODE GPIO_Mode_Out_PP
#define SetRow0() GPIO_SetBits(ROW0_GPIO_PORT, ROW0_GPIO_PIN)
#define ResetRow0() GPIO_ResetBits(ROW0_GPIO_PORT, ROW0_GPIO_PIN)
#define ReadRow0() GPIO_ReadInputDataBit(ROW0_GPIO_PORT,ROW0_GPIO_PIN)
#define SetRow1() GPIO_SetBits(ROW1_GPIO_PORT, ROW1_GPIO_PIN)
#define ResetRow1() GPIO_ResetBits(ROW1_GPIO_PORT, ROW1_GPIO_PIN)
#define ReadRow1() GPIO_ReadInputDataBit(ROW1_GPIO_PORT,ROW1_GPIO_PIN)
#define SetCOL0() GPIO_SetBits(COL0_GPIO_PORT, COL0_GPIO_PIN)
#define ResetCOL0() GPIO_ResetBits(COL0_GPIO_PORT, COL0_GPIO_PIN)
#define ReadCOL0() GPIO_ReadInputDataBit(COL0_GPIO_PORT,COL0_GPIO_PIN)
#define SetCOL1() GPIO_SetBits(COL1_GPIO_PORT, COL1_GPIO_PIN)
#define ResetCOL1() GPIO_ResetBits(COL1_GPIO_PORT, COL1_GPIO_PIN)
#define ReadCOL1() GPIO_ReadInputDataBit(COL1_GPIO_PORT,COL1_GPIO_PIN)
void keyboard_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_Pin = ROW0_GPIO_PIN;
GPIO_InitStructure.GPIO_Mode = ROW0_GPIO_MODE;
GPIO_Init(ROW0_GPIO_PORT, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = ROW1_GPIO_PIN;
GPIO_InitStructure.GPIO_Mode = ROW1_GPIO_MODE;
GPIO_Init(ROW1_GPIO_PORT, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = COL0_GPIO_PIN;
GPIO_InitStructure.GPIO_Mode = COL0_GPIO_MODE;
GPIO_Init(COL0_GPIO_PORT, &GPIO_InitStructure);
SetCol(0);
GPIO_InitStructure.GPIO_Pin = COL1_GPIO_PIN;
GPIO_InitStructure.GPIO_Mode = COL1_GPIO_MODE;
GPIO_Init(COL1_GPIO_PORT, &GPIO_InitStructure);
SetCol(1);
}
矩阵键盘键值读取:
u8 keyboard_GetCurrentKey
(
void
)
{
u8 kbVal;
u8 rowIndex;
u8 colIndex;
kbVal = KEY_noKey;
for(colIndex = 0; colIndex < COL_NUM; colIndex ++)//按列查询
{
ClrCol(colIndex);//列线置低
for (rowIndex=0; rowIndex < ROW_NUM; rowIndex ++)//按行扫描
{
if (!RowVal(rowIndex))//读当前行电平
{
kbVal = KEY_VAL[rowIndex][colIndex];//有值返回,并跳出循环
break;
}
}
SetCol(colIndex);//列线置高
if (kbVal != KEY_noKey)
{
break;
}
}
return(kbVal);
}
可以在主函数中轮询键值进行处理,也可以在定时器中断中轮询键值。在中断中的不要写耗时操作或者加延时。在定时中断轮询键值一般也是配合fifo使用。代码如下:
//2ms定时器
void TIM5_IRQHandler(void)
{
if (TIM_GetFlagStatus(TIM5, TIM_IT_Update))
{
TIM_ClearFlag(TIM5, TIM_IT_Update);
ScanKeyDown();//处理按键中断
}
}
void ScanKeyDown(void)
{
g_keyPara.currentLcdKey = keyboard_GetCurrentKey(); //读取键值
g_keyPara.keyFlag <<= 1;
if(g_keyPara.currentLcdKey != KEY_noKey)
{
g_keyPara.keyFlag ++;
}
if (!g_keyPara.longLcdKeyFlag)//长按和短按处理 和短按的去抖处理
{
if (g_keyPara.currentLcdKey == KEY_noKey)
{
if ((g_keyPara.shortLcdKeyTimer == 0)&&g_keyPara.shortLcdKey != 0)
{
fifo_DataIn(KB_FIFO,g_keyPara.shortLcdKey); //键值进fifo队列等待处理
}
g_keyPara.enterLongLcdKeyTimer = ENTER_LONG_KEY_TIME;
g_keyPara.shortLcdKeyTimer = SHORT_KEY_TIME;
}
else
{
if (g_keyPara.shortLcdKeyTimer > 0)
{
g_keyPara.shortLcdKeyTimer --;
if (g_keyPara.shortLcdKeyTimer == 0)
{
g_keyPara.shortLcdKey = g_keyPara.currentLcdKey;
}
}
if(g_keyPara.enterLongLcdKeyTimer > 0)
{
g_keyPara.enterLongLcdKeyTimer --;
if (g_keyPara.enterLongLcdKeyTimer == 0)
{
g_keyPara.longLcdKeyIntervalTimer = LONG_KEY_INTERVAL_TIME;
g_keyPara.longLcdKeyFlag = 1;
g_keyPara.longLcdKey = g_keyPara.currentLcdKey;
fifo_DataIn(KB_FIFO,g_keyPara.longLcdKey+0x20);//键值进fifo队列等待处理
}
}
}
}
else
{
if (g_keyPara.currentLcdKey == g_keyPara.longLcdKey)
{
if (g_keyPara.longLcdKeyIntervalTimer > 0)
{
g_keyPara.longLcdKeyIntervalTimer --;
if (g_keyPara.longLcdKeyIntervalTimer == 0)
{
fifo_DataIn(KB_FIFO,g_keyPara.longLcdKey+0x20); //键值进fifo队列等待处理
}
}
}
else
{
g_keyPara.longLcdKeyFlag = 0;
g_keyPara.longLcdKey = KEY_noKey;
g_keyPara.shortLcdKey = KEY_noKey;
g_keyPara.shortLcdKeyTimer = SHORT_KEY_TIME;
g_keyPara.enterLongLcdKeyTimer = ENTER_LONG_KEY_TIME;
g_keyPara.longLcdKeyIntervalTimer = LONG_KEY_INTERVAL_TIME;
}
}
}
结尾
本文主要介绍了串口模块和矩阵键盘模块的管脚配置和初始化,并简要介绍了各模块的中断使用方法。
如有疑问,欢迎留言讨论。
扫描上方二维码关注“嵌入式案例Show”公众号,看更多嵌入式案例