【BZOJ495/NOI2015】程序自动分析

探讨了在程序自动分析中如何判断一组变量相等/不等约束条件是否可同时满足,采用并查集算法解决简化版约束满足问题。

                                   4195: [Noi2015]程序自动分析

                                                      Time Limit: 10 Sec  Memory Limit: 512 MB
                                                                 Submit: 3218  Solved: 1502

Description

 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。

考虑一个约束满足问题的简化版本:假设x1,x2,x3,…代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x1≠x4,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。

现在给出一些约束满足问题,请分别对它们进行判定。

Input

输入文件的第1行包含1个正整数t,表示需要判定的问题个数。注意这些问题之间是相互独立的。

对于每个问题,包含若干行:

第1行包含1个正整数n,表示该问题中需要被满足的约束条件个数。

接下来n行,每行包括3个整数i,j,e,描述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。若e=1,则该约束条件为xi=xj;若e=0,则该约束条件为xi≠xj。

Output

输出文件包括t行。

输出文件的第k行输出一个字符串“YES”或者“NO”(不包含引号,字母全部大写),“YES”表示输入中的第k个问题判定为可以被满足,“NO”表示不可被满足。

Sample Input

2
2
1 2 1
1 2 0
2
1 2 1
2 1 1

Sample Output

NO
YES

HINT

 在第一个问题中,约束条件为:x1=x2,x1≠x2。这两个约束条件互相矛盾,因此不可被同时满足。

在第二个问题中,约束条件为:x1=x2,x2=x1。这两个约束条件是等价的,可以被同时满足。

1≤n≤1000000

1≤i,j≤1000000000

 

解析:

       相等合并,若不等却在一个集合内为"NO",用并查集实现。最好先离散化一下。

 

代码:

#include <bits/stdc++.h>
using namespace std;

const int Max=1000005;
int t,n,tag,tot;
int father[Max<<1],a[Max<<1];
struct shu{int x,y,q;};
shu num[Max];

inline int get_int()
{
	int x=0,f=1;
	char c;
	for(c=getchar();(!isdigit(c))&&(c!='-');c=getchar());
	if(c=='-') f=-1,c-getchar();
	for(;isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+c-'0';
	return x*f;
}

inline bool comp(const shu &a,const shu &b){return a.q>b.q;}

inline void pre()
{
	for(int i=1;i<=(n<<1);i++) father[i]=i;
	int n1=unique(a+1,a+tot+1)-a-1;
	sort(a+1,a+n1+1);
	for(int i=1;i<=n;i++) num[i].x=lower_bound(a+1,a+n1+1,num[i].x)-a;
	for(int i=1;i<=n;i++) num[i].y=lower_bound(a+1,a+n1+1,num[i].y)-a;
	sort(num+1,num+n+1,comp);
}

inline int getfather(int v){return father[v]==v ? v : father[v]=getfather(father[v]);}

int main()
{
	t=get_int();
	while(t--)
	{
	  n=get_int(),tag=0,tot=0;
	  for(int i=1;i<=n;i++) a[++tot]=num[i].x=get_int(),a[++tot]=num[i].y=get_int(),num[i].q=get_int();
	  pre();
	  for(int i=1;i<=n;i++)
	  {
	  	int fax=getfather(num[i].x),fay=getfather(num[i].y);
	  	if(num[i].q) {if(fax!=fay) father[fay]=fax;}
	  	else{if(fax==fay) {tag=1;break;}}
	  }
	  if(tag) printf("NO\n");
	  else printf("YES\n");
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值