LBP算法参考文章:
https://blog.youkuaiyun.com/heli200482128/article/details/79204008
示例代码:
from __future__ import division
import skimage.io
import skimage.feature
import skimage.color
import skimage.transform
import skimage.util
import skimage.segmentation
import numpy
import matplotlib.pyplot as plt
from skimage.segmentation import felzenszwalb
from skimage.data import coffee
img = coffee()
for colour_channel in (0, 1, 2):
img[:, :, colour_channel] = skimage.feature.local_binary_pattern(
img[:, :, colour_channel], 8,1.0,method='var')
plt.imshow(img)
plt.show()
结果:
该函数的原型为:
skimage.feature.local_binary_pattern(image, P, R, method=‘default’)
image:灰度图像的像素矩阵
P:选取中心像素周围的像素点的个数
R:选取的区域的半径
method : {‘default’, ‘ror’, ‘uniform’, ‘var’}
Method to determine the pattern.
‘default’: original local binary pattern which is gray scale but notrotation invariant.
‘ror’: extension of default implementation which is gray scale androtation invariant.
‘uniform’: improved rotation invariance with uniform patterns andfiner quantization of the angular space which is gray scale and
rotation invariant.
‘nri_uniform’: non rotation-invariant uniform patterns variantwhich is only gray scale invariant [R177].
‘var’: rotation invariant variance measures of the contrast of localimage texture which is rotation but not gray scale invariant.
参考文章:
https://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.local_binary_pattern