python中的axis究竟是如何定义的呢?
- 他们究竟代表是DataFrame的行还是列?考虑以下代码:
>>> df = pd.DataFrame([[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]], \
columns=["col1", "col2", "col3", "col4"])
>>> df # 输出
col1 col2 col3 col4
0 1 1 1 1
1 2 2 2 2
2 3 3 3 3
如果我们调用df.mean(axis=1)
,我们将得到按行计算的均值
>>> df.mean(axis=1)
0 1
1 2
2 3
然而,如果我们调用df.drop((name, axis=1)
,我们实际上删掉了一列,而不是一行:
>>> df.drop("col4", axis=1)
col1 col2 col3
0 1 1 1
1 2 2 2
2 3 3 3
-
Can someone help me understand what is meant by an “axis” in pandas/numpy/scipy?
有人能帮我理解一下,在pandas、numpy、scipy
三都当中axis
参数的真实含义吗? -
投票最高的答案揭示了问题的本质:
其实问题理解axis
有问题,df.mean
其实是在每一行上取所有列的均值,而不是保留每一列的均值。也许简单的来记就是axis=0
代表往跨行(down
),而axis=1
代表跨列(across
),作为方法动作的副词(译者注)
换句话说:
- 使用0值表示沿着每一列或行标签\索引值向下执行方法
- 使用1值表示沿着每一行或者列标签模向执行对应的方法
下图代表在DataFrame
当中axis
为0
和1
时分别代表的含义:
- axis参数作用方向图示
另外,记住,Pandas保持了Numpy对关键字axis的用法,用法在Numpy库的词汇表当中有过解释:
轴用来为超过一维的数组定义的属性
二维数据拥有两个轴:第0轴沿着行的垂直往下,第1轴沿着列的方向水平延伸。
所以问题当中第一个列子df.mean(axis=1)
代表沿着列水平方向计算均值,而第二个列子df.drop(name, axis=1)
代表将name
对应的列标签(们)沿着水平的方向依次删掉。
Reference
http://blog.youkuaiyun.com/wangying19911991/article/details/73928172
https://www.zhihu.com/question/58993137