原题目
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2 Output: 3 Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner: 1. Right -> Right -> Down 2. Right -> Down -> Right 3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3 Output: 28
思路
第一遍解法
网上好的解法
class Solution {
public:
int uniquePaths(int m, int n) {
int N = n + m - 2;// 一共需要走的步数
int k = m - 1; // 需要向下走的步数
double res = 1;
// 计算所有的路径
// 当向下的步数和向右的步数不同时,路径 一定 不同
// 当向下的步数和向右的步数相同时 假设 m = 2, n = 3
// 向下走 2-1=1 步 向右走 3+2-2-1=2 步 一共走 2+1=3 步
// 向下走的顺序可以是第一步、第二步、第三步
// 计算公式就是 C(N, k) = n! / (k!(n - k)!)
// 化简之后的计算公式
// C = ((n-k+1)*(n-k+2)*...*(n-k+k))/1*2*...*k
// = (n-k+1)/1 * (n-k+2)/2 *...*(n-k+k)/k
for (int i = 1; i <= k; i++)
res = res * (N - k + i) / i;
return (int)res;
}
};
自己可以改进的地方
最简代码