RDD用法与实例(十):spark中rdd实现k-means

本文深入探讨了如何在Apache Spark中使用RDD实现K-Means聚类算法。通过Python API,我们详细解析了数据预处理、K-Means迭代过程以及结果评估的关键步骤,展示了Spark在大数据机器学习场景下的高效处理能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np

def parseVector(line):
    return np.array([float(x) for x in line.split()])

def closestPoint(p, centers):
    bestIndex = 0
    closest = float("+inf")
    for i in range(len(centers)):
        tempDist = np.sum((p - centers[i]) ** 2)
        if tempDist < closest:
            closest = tempDist
            bestIndex = i
    return bestIndex

# The data file can be downloaded at http://www.cse.ust.hk/msbd5003/data/kmeans_data.txt
lines = sc.textFile('/Users/huangluyu/data/kmeans_data.txt', 5)  

# The data file can be downloaded at http://www.cse.ust.hk/msbd5003/data/kmeans_bigdata.txt
# lines = sc.textFile('../data/kmeans_bigdata.txt', 5)  
# lines is an RDD of strings
K = 3
convergeDist = 0.01  
# terminate algorithm when the total distance from old center to new centers is less than this value

data = lines.map(parseVector).cache() # data is an RDD of arrays

kCenters = data.t
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值