Problem:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
int n = triangle.size();
for(int i = 1; i < n; i++){
triangle[i][0] += triangle[i - 1][0];
for(int j = 1; j < triangle[i].size() - 1; j++){
triangle[i][j] = min(triangle[i][j] + triangle[i - 1][j - 1], triangle[i][j] + triangle[i - 1][j]);
}
triangle[i].back() += triangle[i - 1].back();
}
return *min_element(triangle[n - 1].begin(), triangle[n - 1].end());
}
};