Numpy中sum函数求和结果维度问题

本文介绍了如何使用 Numpy 的 sum 函数沿指定轴进行求和,并解释了如何通过设置 keepdims 参数保持输出数组的维度不变。此外还对比了 (N,) 和 (N,1) 形状的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用Numpy(下面简称np)中的sum函数对某一维度求和时,由于该维度会在求和后变成一个数,所以所得结果的这一维度为空。比如下面的例子:

a = np.array([[1,2,3],[4,5,6]])
b = np.sum(a,axis=1)
print(b.shape)
# (2,)

所以,对于一个shape为(2,3)的数组,在默认情况下使用np.sum函数求和后得到的结果shape是 (2,),如果我们想得到的是(2,1)的shape怎么办?比如Ng的深度学习编程练习中Course 1 Assignment 4就要求这样。使用reshape函数当然可以,只是没有必要,太麻烦了一点不优雅。我们可以使用通过设置keepdims参数实现,还是这个例子:

a = np.array([[1,2,3],[4,5,6]])
b = np.sum(a,axis=1,keepdims=True)
print(b.shape)
# (2,1)

(2,1)和(2,)的shape之间不同参见 What’s the difference between (N,) and (N,1) in Numpy? —Stackoverflow

这里有个小例子可以帮助理解:

a = np.ones((5,))
b = np.ones((5,1))
print(a)
# [1. 1. 1. 1. 1.]

print(b)
# [[1.]
#  [1.]
#  [1.]
#  [1.]
#  [1.]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值