题目描述:
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
使用动态规划,状态dp[i][j]表示字符串words1的前i个字符构成的子串和字符串words2的前j个字符构成的子串之间的最小编辑距离。
状态转移方程为:
如果words1[i-1]=words2[j-1],那么dp[i][j]=dp[i-1][j-1]
否则dp[i][j]=min(dp[i-1][j-1],dp[i-1][j],dp[i][j-1])+1
AC代码如下:
class Solution {
public:
int minDistance(string word1, string word2) {
int n1 = word1.size();
int n2 = word2.size();
if (n1 == 0) return n2;
if (n2 == 0) return n1;
vector<vector<int>> dp(n1+1, vector<int>(n2+1, 0));
//initial the first row
for (int i = 0; i <= n2; ++i) dp[0][i] = i;
//initial the first col
for (int i = 0; i <= n1; ++i) dp[i][0] = i;
for (int i = 1; i <= n1; ++i){
for (int j = 1; j <= n2; ++j){
if (word1[i - 1] == word2[j - 1]) dp[i][j] = dp[i - 1][j - 1];
else dp[i][j] = myMin(dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]) + 1;
}
}
return dp[n1][n2];
}
private:
int myMin(int a, int b, int c)
{
return a < b ? (a<c?a:c) : (b<c?b:c);
}
};