题目描述:
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
解题思路:使用动态规划,dp[i][j]表示从起点(0,0)到(i,j)的不同路径的数目,由于只能向右和向下移动,
所以状态转移方程为:
如果obstacleGrid[i][j]=0,那么dp[i][j]=dp[i-1][j]+dp[i][j-1],否则dp[i][j]=0;
最后的dp[m-1][n-1]即为所求。
AC代码如下:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
if (obstacleGrid.size() == 0 || obstacleGrid[0].size() == 0) return 0;
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
vector<vector<int>> dp(m, vector<int>(n, 1));
//initial first row
for (int i = 0; i < n; ++i){
if (obstacleGrid[0][i] == 1) dp[0][i] = 0;
else{
if (i == 0) dp[0][i] = 1;
else dp[0][i] = dp[0][i - 1];
}
}
//initial first col
for (int i = 0; i < m; ++i){
if (obstacleGrid[i][0] == 1) dp[i][0] = 0;
else{
if (i == 0) dp[i][0] = 1;
else dp[i][0] = dp[i - 1][0];
}
}
for (int i = 1; i < m; ++i){
for (int j = 1; j < n; ++j){
if (obstacleGrid[i][j] == 1) dp[i][j] = 0;
else dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
};