Minimum Path Sum

题目描述:

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

解题思路:

使用动态规划,dp[i][j]表示从(0,0)到(i,j)路径上数字的最小和,由于只能向下和向右移动,
所以状态转移方程为:dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i][j],最后dp[rows-1][cols-1]即为所求。


AC代码如下:

class Solution {
public:
	int minPathSum(vector<vector<int>>& grid){
		if (grid.size() == 0 || grid[0].size() == 0) return 0;
		int m = grid.size();
		int n = grid[0].size();
		vector<vector<int>> dp(m, vector<int>(n, 0));
		//initial the first row
		for (int i = 0; i < n; ++i){
			if (i == 0) dp[0][i] = grid[0][i];
			else dp[0][i] = grid[0][i] + dp[0][i - 1];
		}
		//initial the first col
		for (int i = 0; i < m; ++i){
			if (i == 0) dp[i][0] = grid[i][0];
			else dp[i][0] = grid[i][0] + dp[i - 1][0];
		}

		for (int i = 1; i < m; ++i){
			for (int j = 1; j < n; ++j){
				dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
			}
		}
		return dp[m - 1][n - 1];
	}
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值