题意:
投掷一枚骰子,假设正面向上的数值为x,当前位置为i,每次走min(x,N−i)步,每到一个格子会得到相应的黄金数,求走完长度为N的格子得到黄金的期望
分析:
dp[i]:=到i格子得到黄金的期望,然后转移就好了
代码:
//
// Created by TaoSama on 2015-11-02
// Copyright (c) 2015 TaoSama. All rights reserved.
//
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <set>
#include <vector>
using namespace std;
#define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl
const int N = 1e5 + 10, INF = 0x3f3f3f3f, MOD = 1e9 + 7;
int n, a[105];
double dp[105];
double dfs(int p) {
double& ret = dp[p];
if(ret >= 0) return ret;
if(p == n) return a[n];
ret = 0;
int to = min(6, n - p);
for(int i = 1; i <= to; ++i)
ret += dfs(p + i);
ret = ret / to + a[p];
return ret;
}
int main() {
#ifdef LOCAL
freopen("C:\\Users\\TaoSama\\Desktop\\in.txt", "r", stdin);
// freopen("C:\\Users\\TaoSama\\Desktop\\out.txt","w",stdout);
#endif
ios_base::sync_with_stdio(0);
int t; scanf("%d", &t);
int kase = 0;
while(t--) {
scanf("%d", &n);
for(int i = 1; i <= n; ++i) scanf("%d", a + i);
for(int i = 1; i <= n; ++i) dp[i] = -1;
printf("Case %d: %.12f\n", ++kase, dfs(1));
}
return 0;
}

探讨使用期望值原理解决投掷骰子并基于骰子面值决定移动步数的问题,通过动态规划方法求解完成特定长度路径上的黄金期望收集量。
503

被折叠的 条评论
为什么被折叠?



