| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 13576 | Accepted: 6123 |
Description
One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?
Input
Lines 2..M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.
Output
Sample Input
4 8 2 1 2 4 1 3 2 1 4 7 2 1 1 2 3 5 3 1 2 3 4 4 4 2 3
Sample Output
10
- - 思路非常经典的最短路题目 由于起点不一 但终点唯一
直接求终点出发的最短路并将边取反
回来的短路 其实就是原来的边 从终点出发求最短路
两个数组记录下 然后枚举即可
AC代码如下:
//
// POJ 3268 Silver Cow Party
//
// Created by TaoSama on 2015-03-20
// Copyright (c) 2015 TaoSama. All rights reserved.
//
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <set>
#include <vector>
#define CLR(x,y) memset(x, y, sizeof(x))
using namespace std;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
const int N = 1e5 + 10;
int n, m, s, dp[1005], dp2[1005];
struct Edge {
int to, cost;
};
vector<Edge> G[N], Gr[N];
typedef pair<int, int> Sta;
void dijkstra(vector<Edge> *G, int *dp) {
priority_queue<Sta, vector<Sta>, greater<Sta> > pq;
pq.push(Sta(0, s)); dp[s] = 0;
while(!pq.empty()) {
Sta p = pq.top(); pq.pop();
int u = p.second, d = p.first;
if(d > dp[u]) continue;
for(int i = 0; i < G[u].size(); ++i) {
Edge &e = G[u][i];
if(dp[e.to] > d + e.cost) {
dp[e.to] = d + e.cost;
//printf("dp[%d]: %d\n", e.to, dp[e.to]);
pq.push(Sta(dp[e.to], e.to));
}
}
}
}
int main() {
#ifdef LOCAL
freopen("in.txt", "r", stdin);
// freopen("out.txt","w",stdout);
#endif
ios_base::sync_with_stdio(0);
scanf("%d%d%d", &n, &m, &s);
for(int i = 1; i <= m; ++i) {
int x, y, v; scanf("%d%d%d", &x, &y, &v);
G[x].push_back((Edge) {y, v});
Gr[y].push_back((Edge) {x, v});
}
memset(dp, 0x3f,sizeof dp);
memset(dp2, 0x3f,sizeof dp2);
dijkstra(G, dp); dijkstra(Gr, dp2);
int ans = -INF;
for(int i = 1; i <= n; ++i)
ans = max(ans, dp[i] + dp2[i]);
printf("%d\n", ans);
return 0;
}

文章探讨了在多个农场之间组织牛群聚会的问题,通过解决最短路径问题,确保每头牛从农场到聚会地点再返回其农场的行程最短。利用迪杰斯特拉算法优化路径选择。
352

被折叠的 条评论
为什么被折叠?



