POJ 3268 Silver Cow Party (dijkstra来回最短路)

文章探讨了在多个农场之间组织牛群聚会的问题,通过解决最短路径问题,确保每头牛从农场到聚会地点再返回其农场的行程最短。利用迪杰斯特拉算法优化路径选择。

Silver Cow Party
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 13576 Accepted: 6123

Description

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively: NM, and X 
Lines 2..M+1: Line i+1 describes road i with three space-separated integers: AiBi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

Output

Line 1: One integer: the maximum of time any one cow must walk.

Sample Input

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

Sample Output

10

- - 思路非常经典的最短路题目  由于起点不一 但终点唯一

直接求终点出发的最短路并将边取反

回来的短路 其实就是原来的边 从终点出发求最短路

两个数组记录下 然后枚举即可

AC代码如下:

//
//  POJ 3268 Silver Cow Party
//
//  Created by TaoSama on 2015-03-20
//  Copyright (c) 2015 TaoSama. All rights reserved.
//
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <set>
#include <vector>
#define CLR(x,y) memset(x, y, sizeof(x))

using namespace std;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
const int N = 1e5 + 10;

int n, m, s, dp[1005], dp2[1005];
struct Edge {
	int to, cost;
};
vector<Edge> G[N], Gr[N];
typedef pair<int, int> Sta;

void dijkstra(vector<Edge> *G, int *dp) {
	priority_queue<Sta, vector<Sta>, greater<Sta> > pq;
	pq.push(Sta(0, s)); dp[s] = 0;
	while(!pq.empty()) {
		Sta p = pq.top(); pq.pop();
		int u = p.second, d = p.first;
		if(d > dp[u]) continue;
		for(int i = 0; i < G[u].size(); ++i) {
			Edge &e = G[u][i];
			if(dp[e.to] > d + e.cost) {
				dp[e.to] = d + e.cost;
				//printf("dp[%d]: %d\n", e.to, dp[e.to]);
				pq.push(Sta(dp[e.to], e.to));
			}
		}
	}
}

int main() {
#ifdef LOCAL
	freopen("in.txt", "r", stdin);
//	freopen("out.txt","w",stdout);
#endif
	ios_base::sync_with_stdio(0);

	scanf("%d%d%d", &n, &m, &s);
	for(int i = 1; i <= m; ++i) {
		int x, y, v; scanf("%d%d%d", &x, &y, &v);
		G[x].push_back((Edge) {y, v});
		Gr[y].push_back((Edge) {x, v});
	}
	memset(dp, 0x3f,sizeof dp);
	memset(dp2, 0x3f,sizeof dp2);
	dijkstra(G, dp); dijkstra(Gr, dp2);
	int ans = -INF;
	for(int i = 1; i <= n; ++i)
		ans = max(ans, dp[i] + dp2[i]);
	printf("%d\n", ans);
	return 0;
}


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值