An atom of element X can exist in n distinct states with energies E1 < E2 < ... < En. Arkady wants to build a laser on this element, using a three-level scheme. Here is a simplified description of the scheme.
Three distinct states i, j and k are selected, where i < j < k. After that the following process happens:
- initially the atom is in the state i,
- we spend Ek - Ei energy to put the atom in the state k,
- the atom emits a photon with useful energy Ek - Ej and changes its state to the state j,
- the atom spontaneously changes its state to the state i, losing energy Ej - Ei,
- the process repeats from step 1.
Let's define the energy conversion efficiency as
, i. e. the ration between the useful energy of the photon and spent energy.
Due to some limitations, Arkady can only choose such three states that Ek - Ei ≤ U.
Help Arkady to find such the maximum possible energy conversion efficiency within the above constraints.
The first line contains two integers n and U (3 ≤ n ≤ 105, 1 ≤ U ≤ 109) — the number of states and the maximum possible difference between Ek and Ei.
The second line contains a sequence of integers E1, E2, ..., En (1 ≤ E1 < E2... < En ≤ 109). It is guaranteed that all Ei are given in increasing order.
If it is not possible to choose three states that satisfy all constraints, print -1.
Otherwise, print one real number η — the maximum possible energy conversion efficiency. Your answer is considered correct its absolute or relative error does not exceed 10 - 9.
Formally, let your answer be a, and the jury's answer be b. Your answer is considered correct if
.
4 4 1 3 5 7
0.5
10 8 10 13 15 16 17 19 20 22 24 25
0.875
3 1 2 5 10
-1
In the first example choose states 1, 2 and 3, so that the energy conversion efficiency becomes equal to
.
In the second example choose states 4, 5 and 9, so that the energy conversion efficiency becomes equal to
.
题目链接:传送门
题意:
给定n个严格递增的数(E[1],E[2],...,E[n]),从中任意找三个数,设下标分别为i,j,k,要求E[i]、E[j]、E[k]相互之间的差值都小于U,且i<j<k,问(E[k]-E[j])/(E[k]-E[i])的最大值是多少,若不存在这样的i,j,k,则输出-1。
思路:
设 res = (E[k]-E[j])/(E[k]-E[i]) = 1 - (E[j]-E[i])/(E[k]-E[i]);
可以看出E[k]越大,res越大 ; E[j]越小,res越大。因此,要在可选范围内,让E[k]的值尽可能大,E[j]尽可能小。
因为 E[k]<E[i]+U 且 E[j]>E[i],所以,可以枚举 i 从1 -> n,找到E[ ]中小于E[i]+U的最大值,即为E[k],E[j]则为E[i+1]。找到遍历 i 的过程中res的最大值即可。
当然,若在[ E[i] , E[i]+U ]的范围内没有3个数,则对于该 i ,res不存在。
优化:用二分查找E[ ]中小于E[i]+U的最大值,总复杂度为O( nlogn ) ;
坑点:题目对答案的精度有要求,要在1e-9之内,而double只能到1e-6,所以要自己模拟一下除法运算,高精度输出。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <vector>
#include <algorithm>
using namespace std;
const int MAX = 1e5 + 100;
int n;
long long U;
long long e[MAX];
//二分查找E[ ]中小于E[i]+U的最大值的下标
long long bin_search(long long x)
{
int l = 0;
int r = n;
while (r - l >= 1)
{
int i = (l + r) >> 1;
if (e[i] == x)
return i;
else if (e[i]<x)
l = i + 1;
else
r = i;
}
if (e[l] > x)
{
for (int i = l; i >= 0; i--)
{
if (e[i] <= x)
return i;
}
}
else if (e[l] == x)
return l;
else
{
for (int i = l; i < n; i++)
{
if (e[i] > x)
return i - 1;
}
}
}
//模拟除法运算
void div(long long a,long long b,long long *num)
{
for(int i=0;i<20;i++)
{
num[i]=a/b;
a=a%b;
a*=10;
}
}
int main()
{
scanf("%d%lld", &n, &U);
for (int i = 0; i < n; i++)
scanf("%lld", &e[i]);
long long ans[100];
memset(ans,0,sizeof(ans));
for (int i = 0; i < n; i++)
{
int num;
if (e[i] + U >= e[n - 1])
num = n - 1;
else
num = bin_search(e[i] + U);
if (num - i + 1 >= 3)
{
//ans = max(ans, (long double)(e[num] - e[i + 1]) / (e[num] - e[i]));
long long tmp[100];
div(e[num] - e[i + 1],e[num] - e[i],tmp);
for(int j=0;j<20;j++)
{
if(tmp[j]>ans[j])
{
for(int k=0;k<20;k++)
ans[k]=tmp[k];
break;
}
else if(tmp[j]==ans[j])
continue;
else
break;
}
}
}
//若ans的值为0,则输出-1
int flag=0;
for(int i=0;i<20;i++)
{
if(ans[i]!=0)
{
flag=1;
break;
}
}
if(flag==0)
{
printf("-1\n");
}
else
{
printf("%lld.",ans[0]);
for(int i=1;i<20;i++)
printf("%lld",ans[i]);
printf("\n");
}
return 0;
}
本文探讨了在特定约束条件下,如何通过选择合适的原子状态来最大化三能级激光的能量转换效率。介绍了问题背景、解决思路及算法实现细节,并提供了一个高精度的解决方案。
370

被折叠的 条评论
为什么被折叠?



