畅通工程
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 22950 Accepted Submission(s): 9965
Problem Description
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出评估的道路条数 N、村庄数目M ( < 100 );随后的 N
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
Output
对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。
Sample Input
3 3 1 2 1 1 3 2 2 3 4 1 3 2 3 2 0 100
Sample Output
3 ?
#include<iostream>
#include<algorithm>
#define MAXN 100
using namespace std;
struct node{
int v;
int u;
int cost;
}g[MAXN];
int per[MAXN];
bool cmp(node g1,node g2)
{
return g1.cost<g2.cost;
}
int find(int x)
{
if(x==per[x]) return x;
else return find(per[x]);
}
int main()
{
int n,m;
while(scanf("%d",&m),m)
{
scanf("%d",&n);
int val=0;
int flag=1;
for(int i=0;i<=n;i++) per[i]=i;
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&g[i].u,&g[i].v,&g[i].cost);
}
sort(g,g+m,cmp);
for(int i=0;i<m;i++){
int fx=find(g[i].u);
int fy=find(g[i].v);
if(fx!=fy){
val+=g[i].cost;
per[fy]=fx;
}
}
int fy=find(1);
for(int i=1;i<n;i++)
{
int fx=find(i);
if(fy!=fx){
flag=0;
break;
}
}
if(flag) printf("%d\n",val);
else printf("?\n");
}
return 0;
}