
pandas
方便处理二维表的第三方独立库
科学边界
这个作者很懒,什么都没留下…
展开
-
pandas6:DataFrame非值数据(Nan)的处理
Pandas中有哪些非值数据1. NaN 是什么NaN是被遗失的,不属于任何类型from numpy import NaN,nanprint(nan)nanprint(NaN==True)print(NaN==False)print(NaN==0)print(NaN=='')print(NaN==NaN)print(NaN==nan)FalseFalseFalseFalseFalseFalseimport pandas as pdx = NaNy = nan原创 2020-07-15 17:26:31 · 11822 阅读 · 0 评论 -
pandas5:DataFrame的链接concat,合并merge与删除drop
1.链接,concat1.1行链接import pandas as pddf1 = pd.read_csv('./data/concat_1.csv')print(df1)df2 = pd.read_csv('./data/concat_2.csv')print(df2)df3 = pd.read_csv('./data/concat_3.csv')print(df3) A B C D0 a0 b0 c0 d01 a1 b1 c1 d12 a2原创 2020-07-15 17:06:00 · 1930 阅读 · 0 评论 -
pandas4:读写多种格式文件pickle,csv,excel,json,html,sql...
import pandas as pdscientists = pd.read_csv('./data/scientists.csv')names = scientists['Name']print(scientists)print(names) Name Born Died Age Occupation0 Rosaline Franklin 1920-07-25 1958-04-16 37原创 2020-07-15 16:47:36 · 462 阅读 · 0 评论 -
pandas3: Pandas基本操作
import pandas as pdpersons = pd.DataFrame({ 'Name':['Rosaline Franklin','William Gosset'], 'Occupation':['Chemist','Statistician'], 'Born':['1920-07-25','1876-06-13'], 'Died':['1958-04-16','1937-10-16'], 'Age':[37,61]},columns=['Occupa原创 2020-07-15 16:38:04 · 532 阅读 · 0 评论 -
pandas2: Pandas特有的数据类型Series和DataFrame
Series和DataFrame是Pandas里最常用的基本数据类型:1.创建Seriesimport pandas as pds1 = pd.Series([1,2,3,4,5])print(s1)0 11 22 33 44 5dtype: int64s2 = pd.Series([1,2,3.0,4,5])print(s2)0 1.01 2.02 3.03 4.04 5.0dtype: float64原创 2020-07-15 16:29:03 · 422 阅读 · 0 评论 -
pandas1:pandas基础
DataFrame的基本元素pandas是一个可以处理文本,二维表的独立第三方库官网:https://pandas.pydata.org/import pandasdf = pandas.read_csv('./data/gapminder.tsv',sep='\t')获取前n行print(df.head()) #默认显示5行print(df.head(6)) country continent year lifeExp pop gdpPercap0原创 2020-07-15 16:22:52 · 548 阅读 · 0 评论 -
Pandas笔记--目录导航
Pandas系列文章:原创 2017-12-27 13:36:23 · 341 阅读 · 0 评论