文章出处: http://blog.youkuaiyun.com/ynnmnm/article/details/5568333
命题:设四元数 u = a*i + b*j + c*k ,且 u ^2 = -1 ;对于任意四元数 p ,以 u 为轴正向旋转(右手坐标系 中逆时针方向,左手坐标系中顺时针方向)θ角度,得到向量 p ’ ,则: p ’ = r * p * r ^(-1) ,其中 r = cos( θ /2) + sin( θ/2) * u 。
证明: r *r ^(-1) = 1 = r ^(-1) * r ...... ( 1 )
在方程( 1 )两边同时乘以 r 的共轭 r *,可以得到:
r *= r ^(-1) * r * r * = r ^(-1) * |r| ^2 ...... ( 2 )
又由: |r| ^2 = (cos( θ /2))^2 + (sin( θ /2))^2* ( a^2 + b^2 + c^2 ) = 1
得 r ^(-1)= r */ |r| ^2 = r * = cos( θ /2) - sin( θ /2) * u
如图所示, 设四元数 v 与 u 垂直,与 u ,p 共面,且 v ^2 = -1 ;四元数w = u * v ,则u , v , w 组成一个直角坐标系。
设p = s * u + t * v,
则r * p * r^(-1) = (cos(θ/2)+ sin(θ/2) * u ) * ( s * u + t * v ) * (cos(θ/2) - sin(θ/2) * u )
= ( s * cos(θ/2)* u + t* cos(θ/2)*v - s* sin(θ/2) + t* sin(θ/2)*w ) * (cos(θ/2) - sin(θ/2) * u )
= s* (cos(θ/2))^2* u + t* (cos(θ/2))^2*v - s* sin(θ/2)* cos(θ/2) + t* sin(θ/2)* cos(θ/2)*w
+ s* sin(θ/2)* cos(θ/2) + t* sin(θ/2)* cos(θ/2)*w - s*(sin(θ/2))^2*u - t*(sin(θ/2))^2*v
= s*u + t* cos(θ)*v + t* sin(θ)*w
由此可知,p’是由p绕u正向旋转θ角度而得。