组队学习-动手学数据分析-第二章第2、3节

本文介绍了在数据分析中数据重构的重要性,并详细讲解了如何使用Pandas的concat、join、merge方法进行数据合并。通过实际操作,包括合并不同文件、计算男女平均票价、统计存活人数等任务,深入理解数据聚合与运算。最后,强调了数据清洗对于后续分析的必要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

复习:在前面我们已经学习了Pandas基础,第二章我们开始进入数据分析的业务部分,在第二章第一节的内容中,我们学习了数据的清洗,这一部分十分重要,只有数据变得相对干净,我们之后对数据的分析才可以更有力。而这一节,我们要做的是数据重构,数据重构依旧属于数据理解(准备)的范围。

开始之前,导入numpy、pandas包和数据
# 导入基本库
import numpy as np
import pandas as pd
df = pd.DataFrame([[1.4, np.nan],
                   [np.nan, 2]],
                 index=['a','b'],
                  columns=['one','two']
                 )
df
onetwo
a1.4NaN
bNaN2.0
df.one + df.two
a   NaN
b   NaN
dtype: float64
df.sum(skipna=False)
one   NaN
two   NaN
dtype: float64
df.iloc[0,0]+df.iloc[1,0]
nan
# 载入data文件中的:train-left-up.csv
df10 = pd.read_csv(r'data/train-left-up.csv')
df10
PassengerIdSurvivedPclassName
0103Braund, Mr. Owen Harris
1211Cumings, Mrs. John Bradley (Florence Briggs Th...
2313Heikkinen, Miss. Laina
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)
4503Allen, Mr. William Henry
...............
43443501Silvey, Mr. William Baird
43543611Carter, Miss. Lucile Polk
43643703Ford, Miss. Doolina Margaret "Daisy"
43743812Richards, Mrs. Sidney (Emily Hocking)
43843901Fortune, Mr. Mark

439 rows × 4 columns

2 第二章:数据重构

2.4 数据的合并

2.4.1 任务一:将data文件夹里面的所有数据都载入,观察数据的之间的关系
#写入代码
df_left_up = pd.read_csv("data/train-left-up.csv")
df_left_down = pd.read_csv("data/train-left-down.csv")
df_right_up = pd.read_csv("data/train-right-up.csv")
df_right_down = pd.read_csv("data/train-right-down.csv")

#写入代码
df_left_up.head()

PassengerIdSurvivedPclassName
0103Braund, Mr. Owen Harris
1211Cumings, Mrs. John Bradley (Florence Briggs Th...
2313Heikkinen, Miss. Laina
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)
4503Allen, Mr. William Henry
df_left_down.head()
PassengerIdSurvivedPclassName
044002Kvillner, Mr. Johan Henrik Johannesson
144112Hart, Mrs. Benjamin (Esther Ada Bloomfield)
244203Hampe, Mr. Leon
344303Petterson, Mr. Johan Emil
444412Reynaldo, Ms. Encarnacion
df_right_up.head()
SexAgeSibSpParchTicketFareCabinEmbarked
0male22.010A/5 211717.2500NaNS
1female38.010PC 1759971.2833C85C
2female26.000STON/O2. 31012827.9250NaNS
3female35.01011380353.1000C123S
4male35.0003734508.0500NaNS
df_right_down.head()
SexAgeSibSpParchTicketFareCabinEmbarked
0male31.000C.A. 1872310.500NaNS
1female45.011F.C.C. 1352926.250NaNS
2male20.0003457699.500NaNS
3male25.0103470767.775NaNS
4female28.00023043413.000NaNS

【提示】结合之前我们加载的train.csv数据,大致预测一下上面的数据是什么

2.4.2:任务二:使用concat方法:将数据train-left-up.csv和train-right-up.csv横向合并为一张表,并保存这张表为result_up
#写入代码
result_up = pd.concat([df_left_up,df_right_up],axis =1)
result_up
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
.......................................
43443501Silvey, Mr. William Bairdmale50.0101350755.9000E44S
43543611Carter, Miss. Lucile Polkfemale14.012113760120.0000B96 B98S
43643703Ford, Miss. Doolina Margaret "Daisy"female21.022W./C. 660834.3750NaNS
43743812Richards, Mrs. Sidney (Emily Hocking)female24.0232910618.7500NaNS
43843901Fortune, Mr. Markmale64.01419950263.0000C23 C25 C27S

439 rows × 12 columns

2.4.3 任务三:使用concat方法:将train-left-down和train-right-down横向合并为一张表,并保存这张表为result_down。然后将上边的result_up和result_down纵向合并为result。
#写入代码
result_down = pd.concat([df_left_down,df_right_down],axis=1)
result_down

PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
044002Kvillner, Mr. Johan Henrik Johannessonmale31.000C.A. 1872310.500NaNS
144112Hart, Mrs. Benjamin (Esther Ada Bloomfield)female45.011F.C.C. 1352926.250NaNS
244203Hampe, Mr. Leonmale20.0003457699.500NaNS
344303Petterson, Mr. Johan Emilmale25.0103470767.775NaNS
444412Reynaldo, Ms. Encarnacionfemale28.00023043413.000NaNS
.......................................
44788702Montvila, Rev. Juozasmale27.00021153613.000NaNS
44888811Graham, Miss. Margaret Edithfemale19.00011205330.000B42S
44988903Johnston, Miss. Catherine Helen "Carrie"femaleNaN12W./C. 660723.450NaNS
45089011Behr, Mr. Karl Howellmale26.00011136930.000C148C
45189103Dooley, Mr. Patrickmale32.0003703767.750NaNQ

452 rows × 12 columns

result = pd.concat([result_up,result_down])
result
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
.......................................
44788702Montvila, Rev. Juozasmale27.00021153613.0000NaNS
44888811Graham, Miss. Margaret Edithfemale19.00011205330.0000B42S
44988903Johnston, Miss. Catherine Helen "Carrie"femaleNaN12W./C. 660723.4500NaNS
45089011Behr, Mr. Karl Howellmale26.00011136930.0000C148C
45189103Dooley, Mr. Patrickmale32.0003703767.7500NaNQ

891 rows × 12 columns

2.4.4 任务四:使用DataFrame自带的方法join方法和append:完成任务二和任务三的任务
#写入代码
result_up = df_left_up.join(df_right_up)
result_down = df_left_down.join(df_right_down)
result = result_up.append(result_down)
result
C:\Users\Ji-Luo\AppData\Local\Temp\ipykernel_11888\552922610.py:1: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
  result = result_up.append(result_down)
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
.......................................
44788702Montvila, Rev. Juozasmale27.00021153613.0000NaNS
44888811Graham, Miss. Margaret Edithfemale19.00011205330.0000B42S
44988903Johnston, Miss. Catherine Helen "Carrie"femaleNaN12W./C. 660723.4500NaNS
45089011Behr, Mr. Karl Howellmale26.00011136930.0000C148C
45189103Dooley, Mr. Patrickmale32.0003703767.7500NaNQ

891 rows × 12 columns

2.4.5 任务五:使用Panads的merge方法和DataFrame的append方法:完成任务二和任务三的任务
#写入代码
result_up = pd.merge(df_left_up,df_right_up,left_index=True,right_index=True)
result_up
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
.......................................
43443501Silvey, Mr. William Bairdmale50.0101350755.9000E44S
43543611Carter, Miss. Lucile Polkfemale14.012113760120.0000B96 B98S
43643703Ford, Miss. Doolina Margaret "Daisy"female21.022W./C. 660834.3750NaNS
43743812Richards, Mrs. Sidney (Emily Hocking)female24.0232910618.7500NaNS
43843901Fortune, Mr. Markmale64.01419950263.0000C23 C25 C27S

439 rows × 12 columns

result_down = pd.merge(df_left_down,df_right_down,left_index=True,right_index=True)
result_down
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
044002Kvillner, Mr. Johan Henrik Johannessonmale31.000C.A. 1872310.500NaNS
144112Hart, Mrs. Benjamin (Esther Ada Bloomfield)female45.011F.C.C. 1352926.250NaNS
244203Hampe, Mr. Leonmale20.0003457699.500NaNS
344303Petterson, Mr. Johan Emilmale25.0103470767.775NaNS
444412Reynaldo, Ms. Encarnacionfemale28.00023043413.000NaNS
.......................................
44788702Montvila, Rev. Juozasmale27.00021153613.000NaNS
44888811Graham, Miss. Margaret Edithfemale19.00011205330.000B42S
44988903Johnston, Miss. Catherine Helen "Carrie"femaleNaN12W./C. 660723.450NaNS
45089011Behr, Mr. Karl Howellmale26.00011136930.000C148C
45189103Dooley, Mr. Patrickmale32.0003703767.750NaNQ

452 rows × 12 columns

result = result_up.append(result_down)
result
C:\Users\Ji-Luo\AppData\Local\Temp\ipykernel_11888\552922610.py:1: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
  result = result_up.append(result_down)
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
.......................................
44788702Montvila, Rev. Juozasmale27.00021153613.0000NaNS
44888811Graham, Miss. Margaret Edithfemale19.00011205330.0000B42S
44988903Johnston, Miss. Catherine Helen "Carrie"femaleNaN12W./C. 660723.4500NaNS
45089011Behr, Mr. Karl Howellmale26.00011136930.0000C148C
45189103Dooley, Mr. Patrickmale32.0003703767.7500NaNQ

891 rows × 12 columns

【思考】对比merge、join以及concat的方法的不同以及相同。思考一下在任务四和任务五的情况下,为什么都要求使用DataFrame的append方法,如何只要求使用merge或者join可不可以完成任务四和任务五呢?

2.4.6 任务六:完成的数据保存为result.csv
#写入代码
result.to_csv('result.csv')

2.5 换一种角度看数据

2.5.1 任务一:将我们的数据变为Series类型的数据
#写入代码
unit_result=result.stack().head(20)
unit_result

0  PassengerId                                                    1
   Survived                                                       0
   Pclass                                                         3
   Name                                     Braund, Mr. Owen Harris
   Sex                                                         male
   Age                                                         22.0
   SibSp                                                          1
   Parch                                                          0
   Ticket                                                 A/5 21171
   Fare                                                        7.25
   Embarked                                                       S
1  PassengerId                                                    2
   Survived                                                       1
   Pclass                                                         1
   Name           Cumings, Mrs. John Bradley (Florence Briggs Th...
   Sex                                                       female
   Age                                                         38.0
   SibSp                                                          1
   Parch                                                          0
   Ticket                                                  PC 17599
dtype: object
#写入代码


复习:在前面我们已经学习了Pandas基础,第二章我们开始进入数据分析的业务部分,在第二章第一节的内容中,我们学习了数据的清洗,这一部分十分重要,只有数据变得相对干净,我们之后对数据的分析才可以更有力。而这一节,我们要做的是数据重构,数据重构依旧属于数据理解(准备)的范围。

开始之前,导入numpy、pandas包和数据
# 导入基本库
import numpy as np
import pandas as pd
# 载入上一个任务人保存的文件中:result.csv,并查看这个文件
df = pd.read_csv('result.csv')
df.head()
Unnamed: 0PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
00103Braund, Mr. Owen Harrismale22.01.00.0A/5 211717.2500NaNS
11211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.01.00.0PC 1759971.2833C85C
22313Heikkinen, Miss. Lainafemale26.00.00.0STON/O2. 31012827.9250NaNS
33411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01.00.011380353.1000C123S
44503Allen, Mr. William Henrymale35.00.00.03734508.0500NaNS

2 第二章:数据重构

第一部分:数据聚合与运算

2.6 数据运用

2.6.1 任务一:通过教材《Python for Data Analysis》P303、Google or anything来学习了解GroupBy机制
#写入心得

2.4.2:任务二:计算泰坦尼克号男性与女性的平均票价
# 写入代码
df.groupby('Sex')['Fare'].mean()
Sex
female    44.479818
male      25.523893
Name: Fare, dtype: float64

在了解GroupBy机制之后,运用这个机制完成一系列的操作,来达到我们的目的。

下面通过几个任务来熟悉GroupBy机制。

2.4.3:任务三:统计泰坦尼克号中男女的存活人数
# 写入代码
df.groupby('Sex')['Survived'].sum()
Sex
female    233
male      109
Name: Survived, dtype: int64
2.4.4:任务四:计算客舱不同等级的存活人数
# 写入代码
df.groupby('Pclass')['Survived'].sum()
Pclass
1    136
2     87
3    119
Name: Survived, dtype: int64

提示:】表中的存活那一栏,可以发现如果还活着记为1,死亡记为0

思考】从数据分析的角度,上面的统计结果可以得出那些结论

#思考心得 
df.groupby('Pclass')['Survived'].apply(lambda x: x.sum() / x.count())

Pclass
1    0.629630
2    0.472826
3    0.242363
Name: Survived, dtype: float64

【思考】从任务二到任务三中,这些运算可以通过agg()函数来同时计算。并且可以使用rename函数修改列名。你可以按照提示写出这个过程吗?

#思考心得
df.groupby('Sex').agg({'Fare':'mean','Pclass':'count'}).rename(columns = {'Fare':'mean_fare','Pclass':'count_pclass'})


mean_farecount_pclass
Sex
female44.479818314
male25.523893577
2.4.5:任务五:统计在不同等级的票中的不同年龄的船票花费的平均值
# 写入代码
df.groupby(['Pclass','Age'])['Fare'].mean()
Pclass  Age  
1       0.92     151.5500
        2.00     151.5500
        4.00      81.8583
        11.00    120.0000
        14.00    120.0000
                   ...   
3       61.00      6.2375
        63.00      9.5875
        65.00      7.7500
        70.50      7.7500
        74.00      7.7750
Name: Fare, Length: 182, dtype: float64
2.4.6:任务六:将任务二和任务三的数据合并,并保存到sex_fare_survived.csv
# 写入代码
df1 = df.groupby('Sex')['Fare'].mean()
df2 = df.groupby('Sex')['Survived'].sum()
pd.merge(df1,df2,on='Sex')
FareSurvived
Sex
female44.479818233
male25.523893109
2.4.7:任务七:得出不同年龄的总的存活人数,然后找出存活人数最多的年龄段,最后计算存活人数最高的存活率(存活人数/总人数)
# 写入代码
df['Age2'] = pd.cut(df['Age'],[0,5,15,30,50,80])
chrs = df.groupby('Age2')['Survived'].sum()
chrs
Age2
(0, 5]       44
(5, 15]      39
(15, 30]    326
(30, 50]    241
(50, 80]     64
Name: Survived, dtype: int64
# 写入代码
chrs.idxmax()
Interval(15, 30, closed='right')
# 写入代码

# 各年龄段/各年龄段总人数存活率
df.groupby('Age2')['Survived'].apply(lambda x:x.sum() / x.count())
Age2
(0, 5]      0.704545
(5, 15]     0.461538
(15, 30]    0.358896
(30, 50]    0.423237
(50, 80]    0.343750
Name: Survived, dtype: float64
# 写入代码
# 总人数
df.shape[0]
# 存活人数

# 各年龄段/总人数存活率
df.groupby('Age2')['Survived'].apply(lambda x:x.sum() / df.shape[0])


Age2
(0, 5]      0.034792
(5, 15]     0.020202
(15, 30]    0.131313
(30, 50]    0.114478
(50, 80]    0.024691
Name: Survived, dtype: float64
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值