题目链接:http://codeforces.com/contest/505/problems
分类:A、枚举 ;B、BFS;C、DP;D、强联通;E、不明
A题:
题意:在字符串的任意任意位置插入一个字符,使得得到的字符串回文
思路:数据范围很小,字符串长度才10,一共276种情况,枚举就行了。
下面是A题代码:
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <vector>
#include <deque>
#include <list>
#include <cctype>
#include <algorithm>
#include <climits>
#include <queue>
#include <stack>
#include <cmath>
#include <map>
#include <set>
#include <iomanip>
#include <cstdlib>
#include <ctime>
#define ll long long
#define ull unsigned long long
#define all(x) (x).begin(), (x).end()
#define clr(a, v) memset( a , v , sizeof(a) )
#define pb push_back
#define mp make_pair
#define read(f) freopen(f, "r", stdin)
#define write(f) freopen(f, "w", stdout)
using namespace std;
const double pi = acos(-1);
inline bool judge ( const string str )
{
int a = 0;
int b = str.size() - 1;
for ( ; a <= b ; ){
if ( str[a] != str[b] ){
return 0;
}
a ++;
b --;
}
return 1;
}
int main()
{
ios::sync_with_stdio( false );
string a;
string b;
cin >> a;
int cnt = 0;
for ( int i = 0; i <= a.size(); i ++ ){
for ( int j = 0; j < 26; j ++ ){
b = a;
string k = "a";
k[0] = k[0] + j;
b.insert ( i, k );
if ( judge ( b ) ){
cout << b << endl;
return 0;
}
}
}
cout << "NA" << endl;
return 0;
}
B题:
题意:给出一张无向图,每条边都有对应的颜色,并且每次只能利用同一种颜色的边。求从a点移动到b点有多少种方案。
思路:同上题,数据范围相当小,只有100个节点,颜色也不超过100种,直接对a点的进行搜索,枚举有多少种颜色的通路能到b点
下面是B题代码:
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <vector>
#include <deque>
#include <list>
#include <cctype>
#include <algorithm>
#include <climits>
#include <queue>
#include <stack>
#include <cmath>
#include <map>
#include <set>
#include <iomanip>
#include <cstdlib>
#include <ctime>
#define ll long long
#define ull unsigned long long
#define all(x) (x).begin(), (x).end()
#define clr(a, v) memset( a , v , sizeof(a) )
#define pb push_back
#define mp make_pair
#define read(f) freopen(f, "r", stdin)
#define write(f) freopen(f, "w", stdout)
using namespace std;
const double pi = acos(-1);
const int maxn = 1005;
vector<int> g[maxn][maxn];
bool SPFA ( int be, int en, int k )
{
queue<int> que;
que.push ( be );
int vis[1000] = { 0 };
while ( ! que.empty() ){
int tmp = que.front();
que.pop();
for ( int i = 0; i < g[k][tmp].size() && vis[tmp] == 0; i ++ ){
que.push( g[k][tmp][i] );
if ( g[k][tmp][i] == en )
return 1;
}
vis[tmp] = 1;
}
return 0;
}
int main()
{
ios::sync_with_stdio( false );
int m, n;
while ( cin >> m >> n ){
int a, b, c;
for ( int i = 0; i < n; i ++ ){
cin >> a >> b >> c;
g[c][a].push_back ( b );
g[c][b].push_back ( a );
}
int k;
cin >> k;
int be, en;
for ( int i = 0; i < k; i ++ ){
cin >> be >> en;
int cnt = 0;
for ( int j = 1; j <= n; j ++ ){
if ( SPFA ( be, en, j ) ) {
cnt ++;
}
}
cout << cnt << endl;
}
}
return 0;
}
C题:
题意:从起点移动到终点,每次只能比前一次移动距离+1,-1,或者不变。每移动到一个点就将该点的值累加,求最大的情况。
思路:动态规划,有第一维表示位置,第二维表示步长,并且最长步长不能超过250,(1+2+3+.....+250) > 30000 , 所以第二维第长度为500,状态转移方程为 dp[i][j] = dp[i][j] + max ( dp[i-(j-301+n)][j-1], dp[i-(j-301+n)][j], dp[i-(j-301+n)][j+1] ); ans = max ( ans, f[i][j] );
下面是C题代码:
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <vector>
#include <deque>
#include <list>
#include <cctype>
#include <algorithm>
#include <climits>
#include <queue>
#include <stack>
#include <cmath>
#include <map>
#include <set>
#include <iomanip>
#include <cstdlib>
#include <ctime>
#define ll long long
#define ull unsigned long long
#define all(x) (x).begin(), (x).end()
#define clr(a, v) memset( a , v , sizeof(a) )
#define pb push_back
#define mp make_pair
#define read(f) freopen(f, "r", stdin)
#define write(f) freopen(f, "w", stdout)
using namespace std;
const double pi = acos(-1);
int num[30005];
int dp[30005][605];
int main()
{
memset ( dp, -1, sizeof ( dp ) );
memset ( num, 0, sizeof ( num ) );
int m, n;
int k;
cin >> m >> n;
for ( int i = 0; i < m; i ++ ){
cin >> k;
num[k] ++;
}
int ans = num[n];
for ( int i = 0; i <= 30000; i ++ ){
for ( int j = 0; j <= 601; j ++ ){
dp[i][j] = -9999999;
}
}
dp[n][301] = num[n];
for ( int i = n + 1; i <= 30000; i ++ ){
for ( int j = 1; j <= 600; j ++ ){
if ( i - ( j - 301 + n ) < 0 || i - ( j - 301 + n ) >= i )continue;
dp[i][j] = max ( dp[i][j], dp[i-(j-301+n)][j-1] );
dp[i][j] = max ( dp[i][j], dp[i-(j-301+n)][j] );
dp[i][j] = max ( dp[i][j], dp[i-(j-301+n)][j+1] );
dp[i][j] += num[i];
ans = max ( ans, dp[i][j] );
}
}
cout << ans << endl;
}
D题:
题意:给出n个节点与m条有向边,判断最少需要边保证连通性不变
思路:最先想到的判断强联通,一个连通块中有若存在强联通分量,则需要的边数=节点数,若不存在强联通,则需要的边数=节点数-1;然后分别对每个连通块进行查询
PS:本来判强联通想通过tarjan染色,搞了好久搞不出来,看别人代码的时候看到了一种很神奇的代码,就拿来学习了下,果然大有收获。
下面是D题代码:
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <vector>
#include <deque>
#include <list>
#include <cctype>
#include <algorithm>
#include <climits>
#include <queue>
#include <stack>
#include <cmath>
#include <map>
#include <set>
#include <iomanip>
#include <cstdlib>
#include <ctime>
#define ll long long
#define ull unsigned long long
#define all(x) (x).begin(), (x).end()
#define clr(a, v) memset( a , v , sizeof(a) )
#define pb push_back
#define mp make_pair
#define read(f) freopen(f, "r", stdin)
#define write(f) freopen(f, "w", stdout)
using namespace std;
const double pi = acos(-1);
#define MAX_V 100005
int V, E;
int dfn[MAX_V], low[MAX_V];
bool instack[MAX_V];
int un[MAX_V];
int din;
int cnt;
int colorCnt = 0;
stack<int>s;
vector<int>Edge[MAX_V];
vector<int>g[MAX_V];
vector<int>ans;
int vis[MAX_V];
void init( int m )
{
for ( int i = 0; i < MAX_V; i ++ ){
Edge[i].clear();
}
for ( int i = 0; i <= MAX_V; i ++ ){
un[i] = i;
}
ans.clear();
while ( ! s.empty() )s.pop();
clr ( dfn, 0 );
clr ( low, 0 );
clr ( vis, 0 );
clr ( instack, 0 );
}
int find ( int x )
{
if ( x == un[x] ){
return x;
}
else{
return un[x] = find( un[x] );
}
}
void merge ( int x, int y )
{
x = find( x );
y = find( y );
if ( x == y )return;
un[x] = y;
return;
}
int bfs ( int i )
{
if ( Edge[i].size() >= 2 ){
int cnt = 0;
queue<int> q;
for ( int j = 0; j < Edge[i].size(); j ++ ){
if ( vis[Edge[i][j]] == 0 ) q.push( Edge[i][j] );
}
while ( ! q.empty() ){
int x = q.front();
q.pop();
cnt ++;
for ( int j = 0; j < g[x].size(); j ++ ){
vis[g[x][j]] --;
if ( vis[g[x][j]] == 0 ) q.push( g[x][j] );
}
}
if ( cnt == Edge[i].size() ){
return Edge[i].size() - 1;
}
else{
return Edge[i].size();
}
}
return 0;
}
int main()
{
ios::sync_with_stdio( false );
int m, n;
while ( cin >> m >> n ){
init ( m );
int a, b;
for ( int i = 0; i < n; i ++ ){
cin >> a >> b;
a --;
b --;
merge ( a, b );
g[a].push_back( b );
vis[b] ++;
}
for ( int i = 0; i < m; i ++ ){
Edge[find(i)].push_back( i );
}
int ans = 0;
for ( int i = 0; i < m; i ++ ){
ans += bfs ( i );
}
cout << ans << endl;
}
}
E题没做。
(未完待续)