题意:给出3个数,分别为n,a,b;n表示有n种配对模式,a表示女生的数量,b表示男生的数量;n种匹配模式中每个a可以与b配对,求最大的匹配数。
链接:http://acm.hdu.edu.cn/showproblem.php?pid=2063
思路:a与b两个独立的点集,求最大的匹配数。二分图最大匹配数模板题。
注意点:忘记清空g数组,无限WA
以下为AC代码:
(1)Hopcroft-Karp算法:
Run ID | Submit Time | Judge Status | Pro.ID | Exe.Time | Exe.Memory | Code Len. | Language | Author |
12717220 | 2015-01-17 11:14:52 | Accepted | 2063 | 0MS | 1824K | 3295 B | G++ | luminous11 |
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <vector>
#include <deque>
#include <list>
#include <cctype>
#include <algorithm>
#include <climits>
#include <queue>
#include <stack>
#include <cmath>
#include <map>
#include <set>
#include <iomanip>
#include <cstdlib>
#include <ctime>
#define ll long long
#define ull unsigned long long
#define all(x) (x).begin(), (x).end()
#define clr(a, v) memset( a , v , sizeof(a) )
#define pb push_back
#define mp make_pair
#define read(f) freopen(f, "r", stdin)
#define write(f) freopen(f, "w", stdout)
using namespace std;
const double pi = acos(-1);
const int MAXN = 5000;
int n1, n2;
vector<int> g[MAXN+10];
int mx[MAXN+10], my[MAXN+10];
queue<int> que;
int dx[MAXN+10], dy[MAXN+10];
bool vis[MAXN+10];
bool find ( int u ){
for ( int i = 0; i < g[u].size(); i ++ ){
if ( ! vis[g[u][i]] && dy[g[u][i]] == dx[u] + 1 ){
vis[g[u][i]] = true;
if ( ! my[g[u][i]] || find( my[g[u][i]] ) ){
mx[u] = g[u][i];
my[g[u][i]] = u;
return true;
}
}
}
return false;
}
int matching(){
memset ( mx, 0, sizeof ( mx ) );
memset ( my, 0, sizeof ( my ) );
int ans = 0;
while ( true ){
bool flag = 0;
while ( ! que.empty() ) que.pop();
memset ( dx, 0, sizeof ( dx ) );
memset ( dy, 0, sizeof ( dy ) );
for ( int i = 1; i <= n1; i ++ ){
if ( ! mx[i] ) que.push(i);
}
while ( ! que.empty() ){
int u = que.front();
que.pop();
for ( int i = 0; i < g[u].size(); i ++ ){
if ( ! dy[g[u][i]] ){
dy[g[u][i]] = dx[u] + 1;
if ( my[g[u][i]] ){
dx[my[g[u][i]]] = dy[g[u][i]] + 1;
que.push( my[g[u][i]] );
}else{
flag = true;
}
}
}
}
if ( ! flag )break;
memset ( vis, 0, sizeof ( vis ) );
for ( int i = 1; i <= n1; i ++ ){
if ( ! mx[i] && find(i) ) ans ++;
}
}
return ans;
}
int main()
{
ios::sync_with_stdio( false );
int k;
while ( cin >> k && k ){
for ( int i = 0; i < MAXN; i ++ ) g[i].clear();
cin >> n1 >> n2;
int a, b;
for ( int i = 0; i < k; i ++ ){
cin >> a >> b;
g[a].push_back ( b );
}
cout << matching() <<endl;
}
return 0;
}
(2)匈牙利算法:
Run ID | Submit Time | Judge Status | Pro.ID | Exe.Time | Exe.Memory | Code Len. | Language | Author |
12716770 | 2015-01-17 10:43:01 | Accepted | 2063 | 15MS | 1756K | 3294B | G++ | luminous11 |
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <vector>
#include <deque>
#include <list>
#include <cctype>
#include <algorithm>
#include <climits>
#include <queue>
#include <stack>
#include <cmath>
#include <map>
#include <set>
#include <iomanip>
#include <cstdlib>
#include <ctime>
#define ll long long
#define ull unsigned long long
#define all(x) (x).begin(), (x).end()
#define clr(a, v) memset( a , v , sizeof(a) )
#define pb push_back
#define mp make_pair
#define read(f) freopen(f, "r", stdin)
#define write(f) freopen(f, "w", stdout)
using namespace std;
const double pi = acos(-1);
const int MAXN = 5000;
int n1, n2;
int from[MAXN+10];
bool use[MAXN+10];
int tot;
bool match ( int x ){
for ( int i = 0; i < g[x].size(); ++i ){
if ( ! use[g[x][i]] ){
use[g[x][i]] = true;
if ( from[g[x][i]] == 0 || match ( from[g[x][i]] ) ){
from[g[x][i]] = x;
return true;
}
}
}
return false;
}
int hungary() {
tot = 0;
memset ( from, 0, sizeof ( from ) );
for ( int i = 1; i <= n2; i ++ ){
memset ( use, 0, sizeof ( use ) );
if ( match(i) ){
tot ++;
}
}
return tot;
}
int main()
{
ios::sync_with_stdio( false );
int k;
while ( cin >> k && k ){
for ( int i = 0; i < MAXN; i ++ ) g[i].clear();
cin >> n1 >> n2;
int a, b;
for ( int i = 0; i < k; i ++ ){
cin >> a >> b;
g[a].push_back ( b );
}
cout << hungary() <<endl;
}
return 0;
}