Sequence
Time Limit: 6000MS | Memory Limit: 65536K | |
Total Submissions: 7312 | Accepted: 2415 |
Description
Given m sequences, each contains n non-negative integer. Now we may select one number from each sequence to form a sequence with m integers. It's clear that we may get n ^ m this kind of sequences. Then we can calculate the sum of
numbers in each sequence, and get n ^ m values. What we need is the smallest n sums. Could you help us?
Input
The first line is an integer T, which shows the number of test cases, and then T test cases follow. The first line of each case contains two integers m, n (0 < m <= 100, 0 < n <= 2000). The following m lines indicate the m sequence
respectively. No integer in the sequence is greater than 10000.
Output
For each test case, print a line with the smallest n sums in increasing order, which is separated by a space.
Sample Input
1
2 3
1 2 3
2 2 3
Sample Output
3 3 4
给一个N行M列的矩阵,从每一行中拿出一个数进行相加,求其和中的前M小
<span style="font-size:18px;">#include <iostream> #include<stdio.h> #include<math.h> #include<string.h> #include<algorithm> #include<queue> #include<set> #include<string> using namespace std; int main() { priority_queue<int,vector<int>,less<int> >p; int n,m,i,j,a[2011],b[2011],t,k; scanf("%d",&t); while(t--) { scanf("%d%d",&n,&m); for(i=0; i<m; i++) scanf("%d",&a[i]); sort(a,a+m); for(k=1; k<n; k++) { for(i=0; i<m; i++) { scanf("%d",&b[i]); p.push(a[0]+b[i]); } sort(b,b+m); for(i=1; i<m; i++) { for(j=0; j<m; j++) { if(a[i]+b[j]>p.top()) break; p.pop(); p.push(a[i]+b[j]); } } for(i=0; i<m; i++) { a[m-i-1]=p.top(); p.pop(); } } for(i=0; i<m-1; i++) printf("%d ",a[i]); printf("%d\n",a[m-1]); } } </span>