Rightmost Digit
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 31938 Accepted Submission(s): 12240
Problem Description
Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2 3 4
Sample Output
7 6HintIn the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7. In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.
幂取模,利用分治法
例如a^29=(a^14)^2*a----->a^14=(a^7)^2----->a^7=(a^3)^2*a----->a^3=a^2*a;
<span style="font-size:18px;">#include <iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
using namespace std;
int fenzhi(int a,int n,int m)
{
int k=1;
while(n>0)
{
if(n%2==1)
k=k*a%m;
a=a*a;
a%=m;
n=n/2;
}
return k;
}
int main()
{
int n,t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
printf("%d\n",fenzhi(n%10,n,10));
}
return 0;
}</span>