引言
随着大型语言模型的发展,以ChatGPT为首,涌现了诸如ChatPDF、BingGPT、NotionAI等多种多样的应用。公众大量地将目光聚焦于生成模型的进展之快,却少有关注支撑许多大型语言模型应用落地的必不可少的Embedding模型。本文将主要介绍为什么Embedding模型在大语言模型中十分重要、当前主流的Embedding训练方法,以及我们关于Embedding模型初步探索的一些思考。
1 Embedding技术简介及历史概要
在机器学习和自然语言处理中,Embedding模型是指将高维度的数据(例如文字、图片、视频)映射到低维度空间的过程。简单来说,embedding向量就是一个N维的实值向量,它将输入的数据表示成一个连续的数值空间中的点。本文主要关注文本embedding。

Embedding重要的原因在于它可以表示单词或者语句的语义。实值向量的embedding可以表示单词的语义,主要是因为这些embedding向量是根据单词在语言上下文中的出现模式进行学习的。例如,如果一个单词在一些上下文中经常与另一个单词一起出现,那么这两个单词的嵌入向量在向量空间中就会有相似的位置。这意味着它们有相似的含义和语义。
Embedding的概念可以追溯到20世纪中叶,Harris提出了分布式语义理论。到20世纪80年代,人们开始尝试用神经网络来学习单词的embedding表示。自2010年以来,随着深度学习技术的发展,先后出现了以Word2Vec、GloVe、FastText为代表的静态向量Embedding和使用ELMo、GPT、BERT为代表生成上下文相关的动态向量embedding,后者可以更好地捕捉单词的语义和上下文信息。
2 Embedding在大模型中的价值
如前文所述,也是被我们熟知的,embedding向量包含语义信息,含义越相近的单词,embedding向量在空间中的位置也越相近。实值向量embedding可以通过从大量的数据中学习单词的语义和上下文信息,从而可以进行向量运算和在不同自然语言处理任务中共享和迁移。
然而,这是Embedding之前的价值。在大语言模型时代,Embedding又有什么新的价值呢?
这要从类ChatGPT模型的缺陷说起。尽管它们能力强大,但目前依然存在以下几点问题:
- 训练数据不实时(如ChatGPT是基于2021年9月之前的数据训练),重新训练成本过高,不现实
- 输入文本长度有限制,通常限制在几千到数万个tokens之间
- 无法访问不能公开的文档
对此,OpenAI发布了一篇文档,说明如何基于embedding使用两步搜索的方式来解决GPT无法处理长文本和最新数据的问题。两步搜索,即先搜索文本库以查找相关的文本部分,再将检索到的文本部分添加到类ChatGPT模型的输入中,获取回复。
以一个代表性的应用来说明,当我们想让大模型根据我们给定的pdf文档进行问题回复时,就可以对超长pdf进行分块,获取每个分块内容的embedding,并使用向量数据库存储。接下来,当你提出问题“xxx在文档中是如何实现的?”时,就可以使用你的问题embedding,去数据库中检索得到与问题embedding相似度最高的pdf内容块embedding。最终把检索得到的pdf内容块和问题一起输入模型,来解决新知识和超长文本输入的问题。
因此,尽管当前的讨论热度不高,但embedding模型的探索对于大语言模型的落地是必不可少的。
3 主流Embedding训练方法
前面提到,OpenAI早已提出了基于Embedding的搜索方案来解决长文本输入和最新数据的问题。自然而然,OpenAI也有一套未公开训练细节的Embedding方案:text-embedding-ada-002。这

最低0.47元/天 解锁文章
15万+

被折叠的 条评论
为什么被折叠?



