KMP算法详解

KMP字符串模式匹配详解

来自优快云     A_B_C_ABC 网友

KMP字符串模式匹配通俗点说就是一种在一个字符串中定位另一个串的高效算法。简单匹配算法的时间复杂度为O(m*n);KMP匹配算法。可以证明它的时间复杂度为O(m+n).。

一.  简单匹配算法

先来看一个简单匹配算法的函数:

int Index_BF ( char S [ ], char T [ ], int pos )

{

/* 若串 S 中从第pos(S 的下标0≤pos<StrLength(S))个字符

起存在和串 T 相同的子串,则称匹配成功,返回第一个

这样的子串在串 S 中的下标,否则返回 -1    */

int i = pos, j = 0;

while ( S[i+j] != '\0'&& T[j] != '\0')

if ( S[i+j] == T[j] )

j ++; // 继续比较后一字符

else

{

i ++; j = 0; // 重新开始新的一轮匹配

}

if ( T[j] == '\0')

return i; // 匹配成功   返回下标

else

return -1; // 串S中(第pos个字符起)不存在和串T相同的子串

// Index_BF


   此算法的思想是直截了当的:将主串S中某个位置i起始的子串和模式串T相比较。即从 j=0 起比较 S[i+j] 与 T[j],若相等,则在主串 S 中存在以 i 为起始位置匹配成功的可能性,继续往后比较( j逐步增1 ),直至与T串中最后一个字符相等为止,否则改从S串的下一个字符起重新开始进行下一轮的"匹配",即将串T向后滑动一位,即 i 增1,而 j 退回至0,重新开始新一轮的匹配。

例如:在串S=”abcabcabdabba”中查找T=” abcabd”(我们可以假设从下标0开始):先是比较S[0]和T[0]是否相等,然后比较S[1]和T[1]是否相等…我们发现一直比较到S[5] 和T[5]才不等。如图:


当这样一个失配发生时,T下标必须回溯到开始,S下标回溯的长度与T相同,然后S下标增1,然后再次比较。如图:

这次立刻发生了失配,T下标又回溯到开始,S下标增1,然后再次比较。如图:


这次立刻发生了失配,T下标又回溯到开始,S下标增1,然后再次比较。如图:


又一次发生了失配,所以T下标又回溯到开始,S下标增1,然后再次比较。这次T中的所有字符都和S中相应的字符匹配了。函数返回TS中的起始下标3。如图:


. KMP匹配算法

还是相同的例子,在S=”abcabcabdabba”中查找T=”abcabd”,如果使用KMP匹配算法,当第一次搜索到S[5] T[5]不等后,S下标不是回溯到1T下标也不是回溯到开始,而是根据TT[5]==’d’的模式函数值(next[5]=2,为什么?后面讲),直接比较S[5] T[2]是否相等,因为相等,ST的下标同时增加;因为又相等,ST的下标又同时增加。。。最终在S中找到了T。如图:



KMP匹配算法和简单匹配算法效率比较,一个极端的例子是:

S=AAAAAA…AAB(100A)中查找T=”AAAAAAAAAB”, 简单匹配算法每次都是比较到T的结尾,发现字符不同,然后T的下标回溯到开始,S的下标也要回溯相同长度后增1,继续比较。如果使用KMP匹配算法,就不必回溯.

对于一般文稿中串的匹配,简单匹配算法的时间复杂度可降为O (m+n),因此在多数的实际应用场合下被应用。

KMP算法的核心思想是利用已经得到的部分匹配信息来进行后面的匹配过程。看前面的例子。为什么T[5]==’d’的模式函数值等于2next[5]=2),其实这个2表示T[5]==’d’的前面有2个字符和开始的两个字符相同,且T[5]==’d’不等于开始的两个字符之后的第三个字符(T[2]=’c’.如图:



也就是说,如果开始的两个字符之后的第三个字符也为’d’,那么,尽管T[5]==’d’的前面有2个字符和开始的两个字符相同,T[5]==’d’的模式函数值也不为2,而是为0

   前面我说:在S=”abcabcabdabba”中查找T=”abcabd”,如果使用KMP匹配算法,当第一次搜索到S[5] T[5]不等后,S下标不是回溯到1T下标也不是回溯到开始,而是根据TT[5]==’d’的模式函数值,直接比较S[5] T[2]是否相等。。。为什么可以这样?

刚才我又说:“(next[5]=2),其实这个2表示T[5]==’d’的前面有2个字符和开始的两个字符相同”。请看图  :因为,S[4] ==T[4]S[3] ==T[3],根据next[5]=2,有T[3]==T[0]T[4] ==T[1],所以S[3]==T[0]S[4] ==T[1](两对相当于间接比较过了),因此,接下来比较S[5] T[2]是否相等。。。



有人可能会问:S[3]T[0]S[4] T[1]是根据next[5]=2间接比较相等,那S[1]T[0]S[2] T[0]之间又是怎么跳过,可以不比较呢?因为S[0]=T[0]S[1]=T[1]S[2]=T[2],而T[0]  !=  T[1], T[1]  !=  T[2],==>  S[0]  != S[1],S[1] != S[2],所以S[1]  != T[0],S[2] != T[0].  还是从理论上间接比较了。

有人疑问又来了,你分析的是不是特殊轻况啊。

假设S不变,在S中搜索T=abaabd”呢?答:这种情况,当比较到S[2]T[2]时,发现不等,就去看next[2]的值,next[2]=-1,意思是S[2]已经和T[0] 间接比较过了,不相等,接下来去比较S[3]T[0]吧。

假设S不变,在S中搜索T=abbabd”呢?答:这种情况当比较到S[2]T[2]时,发现不等,就去看next[2]的值,next[2]=0,意思是S[2]已经和T[2]比较过了,不相等,接下来去比较S[2]T[0]吧。

假设S=”abaabcabdabba”S中搜索T=abaabd”呢?答:这种情况当比较到S[5]T[5]时,发现不等,就去看next[5]的值,next[5]=2,意思是前面的比较过了,其中,S[5]的前面有两个字符和T的开始两个相等,接下来去比较S[5]T[2]吧。

总之,有了串的next值,一切搞定。那么,怎么求串的模式函数值next[n]呢?(本文中next值、模式函数值、模式值是一个意思。)



怎么求串的模式值next[n]

定义

1next[0]= -1  意义:任何串的第一个字符的模式值规定为-1

2next[j]= -1   意义:模式串T中下标为j的字符,如果与首字符

相同,且j的前面的1—k个字符与开头的1—k

个字符不等(或者相等但T[k]==T[j])(1k<j)。

如:T=”abCabCad”  next[6]=-1,因T[3]=T[6]

3next[j]=k    意义:模式串T中下标为j的字符,如果j的前面k

字符与开头的k个字符相等,且T[j] != T[k] 1k<j)。

                       T[0]T[1]T[2]。。。T[k-1]==

T[j-k]T[j-k+1]T[j-k+2]…T[j-1]

T[j] != T[k].1k<j;

(4) next[j]=0   意义:除(1)(2)(3)的其他情况。

 

举例

01)求T=abcac”的模式函数的值。

     next[0]= -1  根据(1

     next[1]=0   根据 (4)   因(3)有1<=k<j;不能说,j=1,T[j-1]==T[0]

     next[2]=0   根据 (4)   因(3)有1<=k<j;T[0]=a!=T[1]=b

     next[3]= -1  根据 (2)

     next[4]=1   根据 (3)  T[0]=T[3]  T[1]=T[4]

       

下标

0

1

2

3

4

T

a

b

c

a

c

next

-1

0

0

-1

1

T=abcab”将是这样:

下标

0

1

2

3

4

T

a

b

c

a

b

next

-1

0

0

-1

0

为什么T[0]==T[3],还会有next[4]=0因为T[1]==T[4], 根据 (3)” T[j] != T[k]”被划入(4)。

02)来个复杂点的,求T=”ababcaabc” 的模式函数的值。

next[0]= -1    根据(1

         next[1]=0    根据(4)

         next[2]=-1   根据 (2)

next[3]=0   根据 (3) T[0]=T[2] T[1]=T[3] 被划入(4

next[4]=2   根据 (3) T[0]T[1]=T[2]T[3] T[2] !=T[4]

next[5]=-1  根据 (2) 

next[6]=1   根据 (3) T[0]=T[5] T[1]!=T[6]

next[7]=0   根据 (3) T[0]=T[6] T[1]=T[7] 被划入(4

next[8]=2   根据 (3) T[0]T[1]=T[6]T[7] T[2] !=T[8]

 

下标

0

1

2

3

4

5

6

7

8

T

a

b

a

b

c

a

a

b

c

next

-1

0

-1

0

2

-1

1

0

2

只要理解了next[3]=0,而不是=1next[6]=1,而不是= -1next[8]=2,而不是= 0,其他的好象都容易理解。

03)   来个特殊的,求 T=”abCabCad” 的模式函数的值。

下标

0

1

2

3

4

5

6

7

T

a

b

C

a

b

C

a

d

next

-1

0

0

-1

0

0

-1

4

         

next[5]= 0  根据 (3) T[0]T[1]=T[3]T[4],T[2]==T[5]

next[6]= -1  根据 (2) 虽前面有abC=abC,T[3]==T[6]

next[7]=4   根据 (3) 前面有abCa=abCa, T[4]!=T[7]

T[4]==T[7],即T=” adCadCad”,那么将是这样:next[7]=0, 而不是= 4,因为T[4]==T[7].

下标

0

1

2

3

4

5

6

7

T

a

d

C

a

d

C

a

d

next

-1

0

0

-1

0

0

-1

0

 

如果你觉得有点懂了,那么

练习:求T=”AAAAAAAAAAB” 的模式函数值,并用后面的求模式函数值函数验证。

 

意义

 next 函数值究竟是什么含义,前面说过一些,这里总结。

设在字符串S中查找模式串T,若S[m]!=T[n],那么,取T[n]的模式函数值next[n],

1.       next[n]=  -1 表示S[m]T[0]间接比较过了,不相等,下一次比较 S[m+1] T[0]

2.       next[n]=0 表示比较过程中产生了不相等,下一次比较 S[m] T[0]

3.       next[n]= k >0 k<n, 表示,S[m]的前k个字符与T中的开始k个字符已经间接比较相等了,下一次比较S[m]T[k]相等吗?

4.       其他值,不可能。

求串T的模式值next[n]的函数

说了这么多,是不是觉得求串T的模式值next[n]很复杂呢?要叫我写个函数出来,目前来说,我宁愿去登天。好在有现成的函数,当初发明KMP算法,写出这个函数的先辈,令我佩服得六体投地。我等后生小子,理解起来,都要反复琢磨。下面是这个函数:

void get_nextval(const char *T, int next[])

{

       // 求模式串Tnext函数值并存入数组 next

       int j = 0, k = -1;

       next[0] = -1;

       while ( T[j/*+1*/] != '\0' )

       {

              if (k == -1 || T[j] == T[k])

              {

                     ++j; ++k;

                     if (T[j]!=T[k])

                            next[j] = k;

                     else

                            next[j] = next[k];

              }// if

              else

                     k = next[k];

       }// while

    ////这里是我加的显示部分

   // for(int  i=0;i<j;i++)

       //{

       //     cout<<next[i];

       //}

       //cout<<endl;

}// get_nextval 

另一种写法,也差不多。

void getNext(const char* pattern,int next[])

{

       next[0]=   -1;

       int k=-1,j=0;

       while(pattern[j]  !=  '\0')

       {

              if(k!=  -1  &&  pattern[k]!=  pattern[j] )

                     k=next[k];

              ++j;++k;

              if(pattern[k]==  pattern[j])

                     next[j]=next[k];

              else

                     next[j]=k;

       }

       ////这里是我加的显示部分

   // for(int  i=0;i<j;i++)

       //{

       //     cout<<next[i];

       //}

       //cout<<endl;

}

下面是KMP模式匹配程序,各位可以用他验证。记得加入上面的函数

#include <iostream.h>

#include <string.h>

int KMP(const char *Text,const char* Pattern) //const 表示函数内部不会改变这个参数的值。

{

       if( !Text||!Pattern||  Pattern[0]=='\0'  ||  Text[0]=='\0' )//

              return -1;//空指针或空串,返回-1

       int len=0;

       const char * c=Pattern;

       while(*c++!='\0')//移动指针比移动下标快。

       {    

              ++len;//字符串长度。

       }

       int *next=new int[len+1];

       get_nextval(Pattern,next);//Patternnext函数值

   

       int index=0,i=0,j=0;

       while(Text[i]!='\0'  && Pattern[j]!='\0' )

       {

              if(Text[i]== Pattern[j])

              {

                     ++i;// 继续比较后继字符

                     ++j;

              }

              else

              {

                     index += j-next[j];

                     if(next[j]!=-1)

                            j=next[j];// 模式串向右移动

                     else

                     {

                            j=0;

                            ++i;

                     }

              }

       }//while

   

       delete []next;

       if(Pattern[j]=='\0')

              return index;// 匹配成功

       else

              return -1;      

}

int main()//abCabCad

{

       char* text="bababCabCadcaabcaababcbaaaabaaacababcaabc";

    char*pattern="adCadCad";

       //getNext(pattern,n);

    //get_nextval(pattern,n);

      cout<<KMP(text,pattern)<<endl;

       return 0;

}

五.其他表示模式值的方法

 

    上面那种串的模式值表示方法是最优秀的表示方法,从串的模式值我们可以得到很多信息,以下称为第一种表示方法。第二种表示方法,虽然也定义next[0]= -1,但后面绝不会出现 -1,除了next[0],其他模式值next[j]=k(0k<j)的意义可以简单看成是:下标为j的字符的前面最多k个字符与开始的k个字符相同,这里并不要求T[j] != T[k]。其实next[0]也可以定义为0(后面给出的求串的模式值的函数和串的模式匹配的函数,是next[0]=0的),这样,next[j]=k(0k<j)的意义都可以简单看成是:下标为j的字符的前面最多k个字符与开始的k个字符相同。第三种表示方法是第一种表示方法的变形,即按第一种方法得到的模式值,每个值分别加1,就得到第三种表示方法。第三种表示方法,我是从论坛上看到的,没看到详细解释,我估计是为那些这样的编程语言准备的:数组的下标从1开始而不是0

 下面给出几种方法的例子:

      表一。

下标

0

1

2

3

4

5

6

7

8

T

a

b

a

b

c

a

a

b

c

(1) next

-1

0

-1

0

2

-1

1

0

2

(2) next

-1

0

0

1

2

0

1

1

2

(3) next

0

1

0

1

3

0

2

1

3

第三种表示方法,在我看来,意义不是那么明了,不再讨论。

           表二。

下标

0

1

2

3

4

T

a

b

c

a

c

(1)next

-1

0

0

-1

1

(2)next

-1

0

0

0

1

      表三。

下标

0

1

2

3

4

5

6

7

T

a

d

C

a

d

C

a

d

(1)next

-1

0

0

-1

0

0

-1

0

(2)next

-1

0

0

0

1

2

3

4

 

对比串的模式值第一种表示方法和第二种表示方法,看表一:

第一种表示方法next[2]= -1,表示T[2]=T[0],且T[2-1] !=T[0]

第二种表示方法next[2]= 0,表示T[2-1] !=T[0],但并不管T[0] T[2]相不相等。

第一种表示方法next[3]= 0,表示虽然T[2]=T[0],但T[1] ==T[3]

第二种表示方法next[3]= 1,表示T[2] =T[0],他并不管T[1] T[3]相不相等。

第一种表示方法next[5]= -1,表示T[5]=T[0],且T[4] !=T[0]T[3]T[4] !=T[0]T[1]T[2]T[3]T[4] !=T[0]T[1]T[2]

第二种表示方法next[5]= 0,表示T[4] !=T[0]T[3]T[4] !=T[0]T[1] T[2]T[3]T[4] !=T[0]T[1]T[2],但并不管T[0] T[5]相不相等。换句话说:就算T[5]==’x’,T[5]==’y’,T[5]==’9’,也有next[5]= 0 

从这里我们可以看到:串的模式值第一种表示方法能表示更多的信息,第二种表示方法更单纯,不容易搞错。当然,用第一种表示方法写出的模式匹配函数效率更高。比如说,在串S=adCadCBdadCadCad 9876543”中匹配串T=adCadCad用第一种表示方法写出的模式匹配函数,当比较到S[6] != T[6]时,取next[6]= -1(表三),它可以表示这样许多信息: S[3]S[4]S[5]==T[3]T[4]T[5]==T[0]T[1]T[2],而S[6] != T[6]T[6]==T[3]==T[0],所以S[6] != T[0],接下来比较S[7]T[0]吧。如果用第二种表示方法写出的模式匹配函数,当比较到S[6] != T[6] 时,取next[6]= 3(表三),它只能表示:S[3]S[4]S[5]== T[3]T[4]T[5]==T[0]T[1]T[2],但不能确定T[6]T[3]相不相等,所以,接下来比较S[6]T[3];又不相等,取next[3]= 0,它表示S[3]S[4]S[5]== T[0]T[1]T[2],但不会确定T[3]T[0]相不相等,即S[6]T[0] 相不相等,所以接下来比较S[6]T[0],确定它们不相等,然后才会比较S[7]T[0]。是不是比用第一种表示方法写出的模式匹配函数多绕了几个弯。

为什么,在讲明第一种表示方法后,还要讲没有第一种表示方法好的第二种表示方法?原因是:最开始,我看严蔚敏的一个讲座,她给出的模式值表示方法是我这里的第二种表示方法,如图:

她说:“next 函数值的含义是:当出现S[i] !=T[j]时,下一次的比较应该在S[i]T[next[j]]  之间进行。”虽简洁,但不明了,反复几遍也没明白为什么。而她给出的算法求出的模式值是我这里说的第一种表示方法next值,就是前面的get_nextval()函数。匹配算法也是有瑕疵的。于是我在这里发帖说她错了:

    http://community.youkuaiyun.com/Expert/topic/4413/4413398.xml?temp=.2027246

   

    现在看来,她没有错,不过有张冠李戴之嫌。我不知道,是否有人第一次学到这里,不参考其他资料和明白人讲解的情况下,就能搞懂这个算法(我的意思是不仅是算法的大致思想,而是为什么定义和例子中next[j]=k(0k<j),而算法中next[j]=k(-1k<j))。凭良心说:光看这个讲座,我就对这个教受十分敬佩,不仅讲课讲得好,声音悦耳,而且这门课讲得层次分明,恰到好处。在KMP这个问题上出了点小差错,可能是编书的时候,在这本书上抄下了例子,在那本书上抄下了算法,结果不怎么对得上号。因为我没找到原书,而据有的网友说,书上已不是这样,也许吧。说起来,教授们研究的问题比这个高深不知多少倍,哪有时间推演这个小算法呢。总之,瑕不掩玉。

     书归正传,下面给出我写的求第二种表示方法表示的模式值的函数,为了从S的任何位置开始匹配T,“当出现S[i] !=T[j]时,下一次的比较应该在S[i]T[next[j]]  之间进行。”    定义next[0]=0 

 void myget_nextval(const char *T, int next[])

{

     // 求模式串Tnext函数值(第二种表示方法)并存入数组 next                

     int j = 1, k = 0;

     next[0] = 0;

       while ( T[j] != '\0' )

     {    

                   if(T[j] == T[k])

                   {

                         next[j] = k;

                         ++j; ++k;                 

                   }

                   else if(T[j] != T[0])

                   {

                  next[j] = k;

                  ++j;

                            k=0;

                   }

                   else

                   {

                          next[j] = k;

                  ++j;

                             k=1;

                   }

     }//while

    for(int  i=0;i<j;i++)

     {

            cout<<next[i];

     }

     cout<<endl;

}// myget_nextval

 

下面是模式值使用第二种表示方法的匹配函数(next[0]=0

 

int my_KMP(char *S, char *T, int pos)

{

int i = pos,  j = 0;//pos(S 的下标0pos<StrLength(S))

while ( S[i] != '\0' && T[j] != '\0' )

{

    if (S[i] == T[j] )

     {

         ++i;

             ++j; // 继续比较后继字符

     }

   else             // a  b  a  b  c  a  a  b  c

                    // 0  0  0  1  2  0  1  1  2

   {              //-1  0  -1  0  2 -1  1  0  2

      i++;

     j = next[j];     /*当出现S[i] !=T[j]时,

              下一次的比较应该在S[i]T[next[j]]  之间进行。要求next[0]=0

在这两个简单示范函数间使用全局数组next[]传值。*/

   }

}//while

if ( T[j] == '\0' )

    return (i-j); // 匹配成功

else

     return -1;

} // my_KMP

 

 

六.后话--KMP的历史

[这段话是抄的]

Cook1970年证明的一个理论得到,任何一个可以使用被称为下推自动机的计算机抽象模型来解决的问题,也可以使用一个实际的计算机(更精确的说,使用一个随机存取机)在与问题规模对应的时间内解决。特别地,这个理论暗示存在着一个算法可以在大约m+n的时间内解决模式匹配问题,这里mn分别是存储文本和模式串数组的最大索引。Knuth Pratt努力地重建了 Cook的证明,由此创建了这个模式匹配算法。大概是同一时间,Morris在考虑设计一个文本编辑器的实际问题的过程中创建了差不多是同样的算法。这里可以看到并不是所有的算法都是“灵光一现”中被发现的,而理论化的计算机科学确实在一些时候会应用到实际的应用中。

这个是完整源码 python实现 Flask,Vue 【python毕业设计】基于Python的Flask+Vue物业管理系统 源码+论文+sql脚本 完整版 数据库是mysql 本文首先实现了基于Python的Flask+Vue物业管理系统技术的发展随后依照传统的软件开发流程,最先为系统挑选适用的言语和软件开发平台,依据需求分析开展控制模块制做和数据库查询构造设计,随后依据系统整体功能模块的设计,制作系统的功能模块图、E-R图。随后,设计框架,依据设计的框架撰写编码,完成系统的每个功能模块。最终,对基本系统开展了检测,包含软件性能测试、单元测试和性能指标。测试结果表明,该系统能够实现所需的功能,运行状况尚可并无明显缺点。本文首先实现了基于Python的Flask+Vue物业管理系统技术的发展随后依照传统的软件开发流程,最先为系统挑选适用的言语和软件开发平台,依据需求分析开展控制模块制做和数据库查询构造设计,随后依据系统整体功能模块的设计,制作系统的功能模块图、E-R图。随后,设计框架,依据设计的框架撰写编码,完成系统的每个功能模块。最终,对基本系统开展了检测,包含软件性能测试、单元测试和性能指标。测试结果表明,该系统能够实现所需的功能,运行状况尚可并无明显缺点。本文首先实现了基于Python的Flask+Vue物业管理系统技术的发展随后依照传统的软件开发流程,最先为系统挑选适用的言语和软件开发平台,依据需求分析开展控制模块制做和数据库查询构造设计,随后依据系统整体功能模块的设计,制作系统的功能模块图、E-R图。随后,设计框架,依据设计的框架撰写编码,完成系统的每个功能模块。最终,对基本系统开展了检测,包含软件性能测试、单元测试和性能指标。测试结果表明,该系统能够实现所需的功能,运行状况尚可并无明显缺点。本文首先实现了基于Python的Flask+Vue物业管理系统技术的发
源码地址: https://pan.quark.cn/s/a4b39357ea24 # SerialAssistant串口助手 下载地址: 本仓库release文件夹 在线下载:http://mculover666.cn/SerialAssistant.zip 功能说明 本项目是使用C# + WinForm框架编写的串口助手。 目前版本为2.0.0版本,拥有以下功能: 未打开串口时,自动扫描可用端口 接收数据支持文本或者HEX方式显示 支持接收数据加入时间戳 支持将当前接收数据保存为文件 支持发送文本数据或HEX数据 支持自动定时发送数据 支持从文件中(.txt, .json)加载数据到发送文本框 支持发送数据记录(不重复记录) ……欢迎加入更多功能 环境说明 VS2019 .NET Framework 4.5 教程 C#上位机开发(一)—— 了解上位机 C#上位机开发(二)—— Hello,World C#上位机开发(三)—— 构建SerialAssistant雏形 C#上位机开发(四)—— SerialAssistant功能完善 C#上位机开发(五)——SerialAssistant界面升级(WinForm界面布局进阶) C#上位机开发(六)——SerialAssistant功能优化(串口自动扫描功能、接收数据保存功能、加载发送文件、发送历史记录、打开浏览器功能、定时发送功能) C#上位机开发(七)—— 修改窗口图标和exe文件图标 C#上位机开发(八)—— 美化界面(给按钮添加背景) 更新日志 2018/6/3 完成串口属性设置,打开与关闭异常处理; 字符串发送功能; 字符串接收功能; 2018/6/4 完善串口扩展功能界面部分 2018/6/6 完善...
基于共轭转移与噬菌体介导的 CRISPR 系统对抗耐药菌的建模研究(Matlab代码实现)内容概要:本文档标题为《基于共轭转移与噬菌体介导的 CRISPR 系统对抗耐药菌的建模研究(Matlab代码实现)》,但实际内容并未围绕该主题展开具体论述,而是列举了大量与Matlab仿真相关的科研技术服务项目,涵盖智能优化算法、机器学习、路径规划、无人机应用、电力系统优化、信号处理等多个领域,并提供了相关资源的网盘下载链接。文档强调科研需逻辑缜密、善于借力与创新,建议按目录顺序阅读以避免迷失方向。真正关于CRISPR系统对抗耐药菌的研究内容缺失,标题与正文严重不符。; 适合人群:具备一定科研基础,熟悉Matlab编程,从事工程优化、生物信息、控制系统、电力系统、人工智能等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①获取各类科研问题的Matlab代码实现资源,如优化调度、预测建模、路径规划等;②复现高水平论文中的算法模型;③开展跨学科仿真研究时借鉴技术方案与代码框架;④利用提供的YALMIP等工具包进行优化问题求解。; 阅读建议:注意本文档标题与实际内容不符,重点应放在其所列出的技术服务范围和提供的网盘资源上,使用者可根据自身研究方向筛选相关内容,结合提供的代码实例进行学习与二次开发,同时注意甄别信息的有效性与准确性。
标题Django基于大数据的大麦网演唱会数据系统研究AI更换标题第1章引言阐述研究Django与大数据结合应用于大麦网演唱会数据系统的背景、意义、国内外现状及论文创新点。1.1研究背景与意义分析大麦网演唱会数据管理需求及大数据与Django结合的重要性。1.2国内外研究现状概述国内外在演唱会数据系统及大数据应用方面的研究进展。1.3论文方法及创新点介绍论文采用的研究方法及系统设计的创新之处。第2章相关理论总结Django框架、大数据技术及演唱会数据系统相关理论。2.1Django框架基础介绍Django框架的特点、架构及核心组件。2.2大数据技术概述阐述大数据的概念、特征及常用处理技术。2.3演唱会数据系统相关理论分析演唱会数据的特点、管理需求及系统设计原则。第3章系统设计详细介绍基于Django与大数据的大麦网演唱会数据系统的设计方案。3.1系统架构设计给出系统的整体架构、模块划分及交互流程。3.2数据库设计阐述数据库的设计原则、表结构及数据关系。3.3大数据处理模块设计介绍大数据处理模块的功能、技术选型及实现方法。第4章系统实现阐述系统的具体实现过程,包括前端、后端及大数据处理部分的实现。4.1前端实现介绍前端页面的设计、交互逻辑及技术实现。4.2后端实现阐述后端服务的开发、接口设计及与前端的交互。4.3大数据处理实现详细介绍大数据处理模块的实现过程,包括数据采集、清洗、分析及可视化。第5章系统测试与优化对系统进行测试,分析测试结果并进行优化。5.1系统测试方法与步骤给出系统的测试方法、测试用例及测试步骤。5.2测试结果分析从性能、功能等方面对测试结果进行详细分析。5.3系统优化策略根据测试结果提出系统优化策略,提高系统性能。第6章结论与展望总结系统研究成果,提出未来研究方向。6.1研究结论概括系统的主要功能、性能及创新点。6.2展望指出系统存在的不足及未来改进方向,展
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值