布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。本文着重于在实现Bloom Filter的时候会使用到的一些技巧。
布隆过滤器的原理不难理解。相对于一个精简的HashMap的数据结构,存入数据的时候,不存入数据本身,只保存其Hash的值。可以用于判断该数据是否存在。其本质是用Hash对数据进行"有损压缩"的位图索引。
如果想判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定。链表,树等等数据结构都是这种思路. 但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢(O(n),O(logn))。
这时候就可以利用哈希表这个数据结构(它可以通过一个Hash函数将一个元素映射成一个位阵列(Bit array)中的一个点)。这样一来,我们只要看看这个点是不是1就知道可以集合中有没有它了。这就是Bloom Filter的基本思想。
但这时,哈希冲突会是一个问题:假设Hash函数是良好的,如果我们的位阵列长度为m个点,那么如果我们想将冲突率降低到例如 1%, 这个散列表就只能容纳m/100个元素。显然这就不叫空间效率了(Space-efficient)了。解决方法也简单,就是使用多个Hash,如果它们有一个说元素不在集合中,那肯定就不在。如果它们都说在,虽然也有一定可能性它们都在说谎,不过直觉上判断这种事情的概率是比较低的。这种多个Hash组成的数据结构就叫Bloom Filter。
一个Bloom Filter是基于一个m位的位向量(b1,…bm),这些位向量的初始值为0。另外,还有一系列的hash函数(h1,…hk),这些hash函数的值域属于1~m。下图是一个bloom filter插入x,y,z并判断某个值w是否在该数据集的示意图:
错误率
如果用来存放Hash值的槽位足够多,那么碰撞的概率就会比较小。但是所占用的空间就会比较大。所以当分配空间的时候,需要通过你能容忍的错误率和需要存放的Key的数量来指定。如果所需存储的Key数量是n,错误率是p,所需要的槽位是m。有计算槽位的公式 m = − n ln p ( ln 2 ) 2 .。也有计算概率的公式, p = 1 − e − ( m / n ln 2 ) n / m ( m / n ln 2 ) 这些公式当然不是我推导出来的,想来也不太难,就不赘述推导过程了。下面这张图可以很好的表示n和m取不同的值的时候,p的值。
根据这张图。我们可以计算出所需要的内存使用量。如果把错误率控制在1%以下的话。
保存key数 | 占用空间 |
---|---|
1万 | 64KB |
10万 | 1MB |
100万 | 16MB |
1000万 | 256MB |
1亿 | <4GB |
可见占用的空间在key的数量在百万级别还是很划算的,但到了上亿的级别就不那么划算了。
Bloom Filter的插入和查询都是常数级别的,所以最大的问题就是占用内存过大。而初次分配内存的时候,如果没有能够确认槽位的个数。如果分配过多会导致内存浪费,太少就会倒是错误率过高。下面提到的两个改进方案可以分别解决这两个问题。
折叠
折叠是指当你初始化一个Bloom Filter的时候,可以分配足够大的槽位,等到Key导入完毕后,可以对使用的槽位进行合并操作。具体方法是将槽位切成两半,一边完全叠加到另一边上。减少内存的使用量。检查key的代码要做稍许改变。例:
通过这个操作,可以使实际使用的内存量减半。多执行几次,能减少更多。
动态扩展
通过折叠操作,可以解决分配过大的问题,但是如果一开始分配过小,就需要扩展槽位才行。如何扩展呢?只要按原尺寸再建立一个Bloom Filter数组。原来的那个保存起来,不再写入。有新的写请求的时候,就将数据写入到新的那个Bloom Filter数组里面去。等到新的也写满了,就再建立一个,以此类推。查询的时候,就需要遍历每一个Bloom Filter数组才行。但因为查询一个Bloom Filter数组的速度很快,查询一组Bloom Filter数组也不会太影响性能。使用这种手段可以是Bloom Filter的大小可以轻易的扩展。但这样做有个的缺陷,就是错误率会随着数组的增加而上升,因为实际的数组长度并没有增加。
通过上面的两个方法,就可以解决BloomFilter的分配内存的问题。但无论哪种方法都有自己局限性,折叠每次只能减半,不是很精确。动态增加的方法会造成错误率增加。最好还是能预先估计到这个BloomFilter的容量。
附:这里有一个布隆过滤器的PHP扩展,http://bbs.phpchina.com/thread-254492-1-3.html。
另外,此算法也是各大互联网公司热衷的面试题之一。我没记错的话,这个应该是百度的某个笔试题。
假设有A,B两个文件,文件里面都是url地址,各有10亿条,如何找出AB两个文件里面都存在的Url。(内存装不下任何一个文件的十分之一)吴军的 《数学之美》 也有讲解。
下面贴Java源码,已注释。
import java.util.BitSet;
//传统的Bloom filter 不支持从集合中删除成员。
//Counting Bloom filter由于采用了计数,因此支持remove操作。
//基于BitSet来实现,性能上可能存在问题
public class SimpleBloomFilter {
//DEFAULT_SIZE为2的25次方
private static final int DEFAULT_SIZE = 2 << 24;
/* 不同哈希函数的种子,一般应取质数,seeds数据共有7个值,则代表采用7种不同的HASH算法 */
private static final int[] seeds = new int[] { 5, 7, 11, 13, 31, 37, 61 };
//BitSet实际是由“二进制位”构成的一个Vector。假如希望高效率地保存大量“开-关”信息,就应使用BitSet.
//BitSet的最小长度是一个长整数(Long)的长度:64位
private BitSet bits = new BitSet(DEFAULT_SIZE);
/* 哈希函数对象 */
private SimpleHash[] func = new SimpleHash[seeds.length];
public static void main(String[] args) {
String value = "stone2083@yahoo.cn";
//定义一个filter,定义的时候会调用构造函数,即初始化七个hash函数对象所需要的信息。
SimpleBloomFilter filter = new SimpleBloomFilter();
//判断是否包含在里面。因为没有调用add方法,所以肯定是返回false
System.out.println(filter.contains(value));
filter.add(value);
System.out.println(filter.contains(value));
}
//构造函数
public SimpleBloomFilter() {
for (int i = 0; i < seeds.length; i++) {
//给出所有的hash值,共计seeds.length个hash值。共7位。
//通过调用SimpleHash.hash(),可以得到根据7种hash函数计算得出的hash值。
//传入DEFAULT_SIZE(最终字符串的长度),seeds[i](一个指定的质数)即可得到需要的那个hash值的位置。
func[i] = new SimpleHash(DEFAULT_SIZE, seeds[i]);
}
}
// 将字符串标记到bits中,即设置字符串的7个hash值函数为1
public void add(String value) {
for (SimpleHash f : func) {
bits.set(f.hash(value), true);
}
}
//判断字符串是否已经被bits标记
public boolean contains(String value) {
//确保传入的不是空值
if (value == null) {
return false;
}
boolean ret = true;
//计算7种hash算法下各自对应的hash值,并判断
for (SimpleHash f : func) {
//&&是boolen运算符,只要有一个为0,则为0。即需要所有的位都为1,才代表包含在里面。
//f.hash(value)返回hash对应的位数值
//bits.get函数返回bitset中对应position的值。即返回hash值是否为0或1。
ret = ret && bits.get(f.hash(value));
}
return ret;
}
/* 哈希函数类 */
public static class SimpleHash {
//cap为DEFAULT_SIZE的值,即用于结果的最大的字符串长度。
//seed为计算hash值的一个给定key,具体对应上面定义的seeds数组
private int cap;
private int seed;
public SimpleHash(int cap, int seed) {
this.cap = cap;
this.seed = seed;
}
//计算hash值的具体算法,hash函数,采用简单的加权和hash
public int hash(String value) {
//int的范围最大是2的31次方减1,或超过值则用负数来表示
int result = 0;
int len = value.length();
for (int i = 0; i < len; i++) {
//数字和字符串相加,字符串转换成为ASCII码
result = seed * result + value.charAt(i);
//System.out.println(result+"--"+seed+"*"+result+"+"+value.charAt(i));
}
// System.out.println("result="+result+";"+((cap - 1) & result));
// System.out.println(414356308*61+'h'); 执行此运算结果为负数,为什么?
//&是java中的位逻辑运算,用于过滤负数(负数与进算转换成反码进行)。
return (cap - 1) & result;
}
}
}
结论:
测试 | m/n | K(括号内为最优解) | 数据基数 | 误判数 | 误判率 | 理论值 | 用时(单位:秒) | 一次判定时间(单位:微秒) | 一次Hash时间(单位:微秒.估参考) |
1 | 20 | 6(14) | 1000W | 3035 | 0.03035% | 0.0303% | 25 | 2.5 | 0.417 |
2 | 20 | 6(14) | 2000W | 5839 | 0.029% | 0.0303% | 51 | 2.55 | 0.425 |
3 | 20 | 14(14) | 1000W | 605 | 0.00605% | 0.014% | 37 | 3.7 | 0.265 |
4 | 20 | 14(14) | 2000W | 1224 | 0.00612% | 0.014% | 84 | 4.2 | 0.3 |
5 | 20 | 20(14) | 1000W | 914 | 0.00914% | 不计算 | 48 | 4.8 | 0.24 |
6 | 20 | 20(14) | 2000W | 1881 | 0.00941% | 不计算 | 99 | 4.95 | 0.2475 |
7 | 10 | 7(7) | 1000w | 517854 | 0.786% | 0.819% | 41 | 4.1 | 0.59 |
8 | 5 | 3(3) | 1000w | 901411 | 9.014% | 9.2% | 31 | 3.1 | 1.033 |
9 | 2 | 1(1) | 1000w | 3910726 | 39.107% | 39.3% | 29 | 2.9 | 2.9 |
10 | 2 | 2(1) | 1000w | 3961065 | 39.61% | 40% | 30 | 3.0 | 3.0 |
11 | 2 | 5(1) | 1000w | 6436696 | 64.37% | 不计算 | 76 | 7.6 | 1.52 |
一次判断时间计算方式为:总时间/总次数
一次HASH所需时间计算方式为:一次判定时间/每次判断需要的hash数。
一次HASH所需时间,当执行hash次数越少,基数越小,误差越大。当一次判断所需的hash次数越大时,一次hash时间越精确。
结论:
m/n的比值越大越好,比较越大,误判率会越代,但同时会使用更多的空间成本。
Hash次数增加带来的收益并不大。需要在条件允许的情况下,尽量的扩大m/n的值。