poj 2914 Minimum Cut(无向图最小割 Stoer-Wagner算法)

/*
给你无向图的信息(点和边的容量),求最小割。Stoer-Wagner算法


求解最小割集普遍采用Stoer-Wagner算法

1.min=MAXINT,固定一个顶点P

2.从点P用“类似”prim的s算法扩展出“最大生成树”,记录最后扩展的顶点和最后扩展的边

3.计算最后扩展到的顶点的切割值(即与此顶点相连的所有边权和),若比min小更新min

4.合并最后扩展的那条边的两个端点为一个顶点(当然他们的边也要合并)

5.转到2,合并N-1次后结束

6.min即为所求,输出min
*/
#include <iostream>
#include <stdio.h>
#include <string.h>
# include <algorithm>
using namespace std;
#define inf 0x3fffff
int mat[600][600];
int res;
void Mincut(int n)
{
    int node[600], dist[600];
    bool visit[600];
    int i, prev, maxj, j, k;
    for (i = 0; i < n; i++)
        node[i] = i;
    while (n > 1)
    {
        int maxj = 1;
        for (i = 1; i < n; i++)   //初始化到已圈集合的割大小
        {
            dist[node[i]] = mat[node[0]][node[i]];
            if (dist[node[i]] > dist[node[maxj]])
                maxj = i;
        }
        prev = 0;
        memset(visit, false, sizeof (visit));
        visit[node[0]] = true;
        for (i = 1; i < n; i++)
        {
            if (i == n - 1)   //只剩最后一个没加入集合的点,更新最小割
            {
                res = min(res, dist[node[maxj]]);
                for (k = 0; k < n; k++) //合并最后一个点以及推出它的集合中的点
                    mat[node[k]][node[prev]] = (mat[node[prev]][node[k]] += mat[node[k]][node[maxj]]);
                node[maxj] = node[--n]; //缩点后的图
            }
            visit[node[maxj]] = true;
            prev = maxj;
            maxj = -1;
            for (j = 1; j < n; j++)
                if (!visit[node[j]])   //将上次求的maxj加入集合,合并与它相邻的边到割集
                {
                    dist[node[j]] += mat[node[prev]][node[j]];
                    if (maxj == -1 || dist[node[maxj]] < dist[node[j]])
                        maxj = j;
                }
        }

    }
    return;
}

int main()
{
    int n, m, a, b, v;
    while (scanf("%d%d", &n, &m) != EOF)
    {
        res = inf;
        memset(mat, 0, sizeof (mat));
        while (m--)
        {
            scanf("%d%d%d", &a, &b, &v);
            mat[a][b] += v;
            mat[b][a] += v;
        }
        Mincut(n);
        printf("%d\n", res);
    }
}

内容概要:本文详细介绍了如何利用Simulink进行自动代码生成,在STM32平台上实现带57次谐波抑制功能的霍尔场定向控制(FOC)。首先,文章讲解了所需的软件环境准备,包括MATLAB/Simulink及其硬件支持包的安装。接着,阐述了构建永磁同步电机(PMSM)霍尔FOC控制模型的具体步骤,涵盖电机模型、坐标变换模块(如Clark和Park变换)、PI调节器、SVPWM模块以及用于抑制特定谐波的陷波器的设计。随后,描述了硬件目标配置、代码生成过程中的注意事项,以及生成后的C代码结构。此外,还讨论了霍尔传感器的位置估算、谐波补偿器的实现细节、ADC配置技巧、PWM死区时间和换相逻辑的优化。最后,分享了一些实用的工程集成经验,并推荐了几篇有助于深入了解相关技术和优化控制效果的研究论文。 适合人群:从事电机控制系统开发的技术人员,尤其是那些希望掌握基于Simulink的自动代码生成技术,以提高开发效率和控制精度的专业人士。 使用场景及目标:适用于需要精确控制永磁同步电机的应用场合,特别是在面对高次谐波干扰导致的电流波形失真问题时。通过采用文中提供的解决方案,可以显著改善系统的稳定性和性能,降低噪声水平,提升用户体验。 其他说明:文中不仅提供了详细的理论解释和技术指导,还包括了许多实践经验教训,如霍尔传感器处理、谐波抑制策略的选择、代码生成配置等方面的实际案例。这对于初学者来说是非常宝贵的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值