(Paper Reading)Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering

Introduction

Within our approach, the bottom-up mechanism (based on Faster R-CNN) proposes image regions, each with an associated feature vector, while the top-down mechanism determines feature weightings.图示
In this paper we propose a combined bottom-up and top-down visual attention mechanism. The bottom-up mechanism proposes a set of salient image regions, with each region represented by a pooled convolutional feature vec- tor. Practically, we implement bottom-up attention using Faster R-CNN [33], which represents a natural expression of a bottom-up attention mechanism.
这篇论文其实

Method

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Conclusion

在这里插入图片描述

Reference

Author slide

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值