第六章第二节定积分及其相关内容
一、与定积分概念有关的问题的解法
1.用定积分概念与性质求极限
2.用定积分性质估值
3.与变限积分有关的问题
例1.估计下列积分值∫1014−x2+x3−−−−−−−−−√dx
解:使用定积分的估值定理解法1:∵14√≤14−x2+x3−−−−−−−−−√≤14−x2−−−−−√x∈[0,1]∴∫1012dx≤∫1014−x2+x3−−−−−−−−−√dx≤∫1014−x2−−−−−√dx[12x]10≤∫1014−x2+x3−−−−−−−−−√dx≤[arcsinx2]1012≤∫1014−x2+x3−−−−−−−−−√dx≤π6解法2(通用):f(x)=14−x2+x3−−−−−−−−−√x∈[0,1]f′(x)=−32(4−x2+x3)−32⋅(3x2−2x)f′(x)=0,解得x1=0,x2=23,y1=12,y2=27104−−−−√x<23,f′(x)>0,x>23,f′(x)<0,x2=23是极大值点,y2=27104−−−−√是极大值f(0)=12f(1)=12fmax(x)=27104−−−−√fmin(x)=12∫1012dx≤∫1014−x2+x3−−−−−−−−−√dx≤∫1027104−−−−√dx12≤∫1014−x2+x3−−−−−−−−−√dx≤27104−−−−√
例2.证明2e√4≤∫20ex2−xdx≤2e2.
证:令f(x)=ex2−x则f′(x)=(2x−1)ex2−x令f′(x)=0,得x=12f(0)=1,f(2)=e2x<12,f′(x)<0;x>12,f′(x)>0,x=12为极小值点,f(12)=e−14是极小值.fmax=e2,fmin=e−14e−14≤f(x)≤e2∫20e−14dx≤∫20ex2−xdx≤∫20e2dx2e√4≤∫20ex2−xdx≤2e2
例3.求可微函数f(x)使满足f2(x)=∫x0f(t)sint2+costdt
解:等式两边对x求导,得2f(x)f′(x)=f(x)sinx2+cosx不妨设f(x)≠0,则f′(x)=12⋅sinx2+cosxf(x)=∫f′(x)dx=12∫sinx2+cosxdx=−12ln(2+cosx)+Cf2(0)=∫00f(t)sint2+costdt=0f(0)=0=−12ln(2+cos0)+CC=12ln3f(x)=−12ln(2+cosx)+12ln3=12ln32+cosx
二、有关定积分计算和证明的方法
1.熟练运用定积分计算的常用公式和方法
2.注意特殊形式定积分的计算(分段函数)
3.利用各种积分技巧计算定积分
4.有关定积分命题的证明方法
例4.求∫ln201−e−2x−−−−−−−√dx.
解:令t=1−e−2x−−−−−−−√,x=−12ln(1−t2)dx=−12⋅−2t1−t2dt=t1−t2dtx=0,t=0;x=ln2,t=3√2∫ln201−e−2x−−−−−−−√dx=∫3√20t⋅t1−t2dt=∫3√201−(1−t2)1−t2dt=∫3√20[11−t2−1]dt=∫3√20[11−t2]dt−3√2=12∫3√20[11+t+11−t]dt−3√2=12∫3√20d(1+t)1+t−12∫3√20d(1−t)1−t−3√2=12[ln(1+t)]3√20−12[ln(1−t)]3√20−3√2=12[ln1+t1−t]3√20−3√2=ln(2+3√)−3√2解法2:令e−x=sint,则x=lnsint,dx=−costsintdt,∫ln201−e−2x−−−−−−−√dx=∫π6π2cost(−costsint)dt=∫π2π61−sin2tsintdt=∫π2π6(csct−sint)dt=[ln|csct−cott|+cost]π2π6=ln(2+3√)−3√2
例5.求I=∫π201−sin2x−−−−−−−−√dx
解:sin2x=2sinxcosxsin2x+cos2x=1cos2x=cos2x−sin2x=2cos2x−1=1−2sin2x1+tan2x=sec2x1+cot2x=csc2x I=∫π201−sin2x−−−−−−−−√dx=∫π20(sinx−cosx)2−−−−−−−−−−−−√dx=∫π40(cosx−sinx)dx+∫π2π4(sinx−cosx)dx
=[sinx+cosx]π40−[sinx+cosx]π2π4
=22√−2
例6.若f(x)∈C[0,1],试证:∫π0xf(sinx)dx=π2∫π0f(sinx)dx=π∫π20f(sinx)dx
证:令t=π−x,dx=−dtx=0,t=π;x=π,t=0∫π0xf(sinx)dx=−∫0π(π−t)f[sin(π−t)]dt=∫π0(π−t)f(sint)dt=π∫π0f(sint)dt−∫π0tf(sint)dt=π∫π0f(sinx)dx−∫π0xf(sinx)dx⟹∫π0xf(sinx)dx=π2∫π0f(sinx)dx令x−π2=t,dx=dtx=0时,t=−π2;x=π时,t=π2∫π0xf(sinx)dx=∫π2−π2(π2+t)f(cost)dt=π∫π20f(cost)dt+∫π2−π2tf(cost)dt因为tf(cost)在[−π2,π2]上是奇函数=π∫π20f(cost)dt+0=π∫π20f(cost)dt令t=π2−x,dt=−dxt=0时,x=π2;t=π2时,x=0=−π∫0π2f[cos(π2−x)]dx=π∫π20f[cos(π2−x)]dx=π∫0π2f(sinx)dx
例7.λ为何值才能使y=x(x−1)与x轴围成的面积等于y=x(x−1)与x=λ及x轴围成的面积.
解:y=x(x−1)与x轴焦点(0,0),(0,1)A1=∫10−x(x−1)dx=16A2=∫0λx(x−1)dx=[13x3−12x2]0λ=12λ2−13λ3=162λ3−3λ2+1=0λ=−12A3=∫λ1x(x−1)dx=[13x3−12x2]λ1=16−13λ3+12λ2=16λ2(12−13λ)=0λ=32