随机过程Hw2
1、设ξ1,ξ2,⋯ ,ξn\xi_1,\xi_2,\cdots,\xi_nξ1,ξ2,⋯,ξn独立同分布,ξi\xi_{i}ξi~U(0,1)U(0,1)U(0,1),对0≤t≤10\leq t\leq10≤t≤1定义
X(t)=1n∑i=1n1ξi≤tX(t)=\frac{1}{n}\sum_{i=1}^n1_{\xi_{i}\leq t}X(t)=n1∑i=1n1ξi≤t
求EX(t),cov(X(s),X(t)).
solution
(1)
E(x)=E(1n∑i=1n1ξi≤t)=1n∑i=1nP(ξi≤t)=t
\begin{align}
E(x)&=E(\frac{1}{n}\sum_{i=1}^n1_{\xi_{i}\leq t})\notag\\
&=\frac{1}{n}\sum_{i=1}^nP(\xi_{i}\leq t)=t\notag
\end{align}
E(x)=E(n1i=1∑n1ξi≤t)=n1i=1∑nP(ξi≤t)=t
cov(X(s),X(t))=EX(S)X(t)−EX(S)EX(t)=E(1n2∑i=1n∑j=1n1ξi≤s1ξj≤t)−st=(n2−n)st−n(s∧t)n2−st=s∧t−stn
\begin{align}
cov(X(s),X(t))&=EX(S)X(t)-EX(S)EX(t)\notag\\
&=E(\frac{1}{n^2}\sum_{i=1}^n\sum_{j=1}^n1_{\xi_{i}\leq s}1_{\xi_{j}\leq t})-st\notag\\
&=\frac{(n^2-n)st-n(s\wedge t)}{n^2}-st\notag\\
&=\frac{s\wedge t-st}{n}\notag
\end{align}
cov(X(s),X(t))=EX(S)X(t)−EX(S)EX(t)=E(n21i=1∑nj=1∑n1ξi≤s1ξj≤t)−st=n2(n2−n)st−n(s∧t)−st=ns∧t−st
2、令{Zn;n∈Z}\{Z_n;n\in Z\}{Zn;n∈Z}是两两不相关随机变量序列,EZn=0,VarZn=1EZ_n=0,VarZ_n=1EZn=0,VarZn=1,令
Xn=∑i=0rαiZn−i,n∈Z
X_n=\sum_{i=0}^r\alpha_iZ_{n-i},n\in Z
Xn=i=0∑rαiZn−i,n∈Z
这里r≥1r\geq 1r≥1,α0,α1,α2,⋯ ,αr\alpha_0,\alpha_1,\alpha_2,\cdots,\alpha_rα0,α1,α2,⋯,αr为常数.
求EXn和Cov(Xn,Xm)EX_n和Cov(X_n,X_m)EXn和Cov(Xn,Xm).
Solution
EXn=0
EX_n=0
EXn=0
Cov(Xn,Xm)=EXnXm−EXnEXm=E(∑i=0rαiZn−i∑j=0rαjZn−j)(不妨设n≤m)={0∣m−n∣>r∑k=0r−∣m−n∣αkαk+∣m−n∣∣m−n∣≤r
\begin{align}
Cov(X_n,X_m)&=EX_nX_m-EX_nEX_m\notag\\
&=E(\sum_{i=0}^r\alpha_iZ_{n-i}\sum_{j=0}^r\alpha_jZ_{n-j})(不妨设n\leq m)\notag\\
&=
\begin{cases}
0 & |m-n|>r\notag\\
\sum_{k=0}^{r-|m-n|}\alpha_k\alpha_{k+|m-n|} & |m-n|\leq r\notag
\end{cases}
\end{align}
Cov(Xn,Xm)=EXnXm−EXnEXm=E(i=0∑rαiZn−ij=0∑rαjZn−j)(不妨设n≤m)={0∑k=0r−∣m−n∣αkαk+∣m−n∣∣m−n∣>r∣m−n∣≤r
3、设X(t)=At+(1−∣A∣)B,t≥0X(t)=At+(1-|A|)B,t\geq 0X(t)=At+(1−∣A∣)B,t≥0,这里A和B独立同分布,P(A=0)=P(A=1)=P(A=−1)=13P(A=0)=P(A=1)=P(A=-1)=\frac{1}{3}P(A=0)=P(A=1)=P(A=−1)=31
(1)写出{X(t)X(t)X(t)}的所有样本函数
(2)计算P(X(1)=1),P(X(2)=1),P(X(1)=1,X(2)=1)P(X(1)=1),P(X(2)=1),P(X(1)=1,X(2)=1)P(X(1)=1),P(X(2)=1),P(X(1)=1,X(2)=1).
Solution
(1)
X(t)={0A=0,B=0,1A=0,B=1,−1A=0,B=−1,tA=1,−tA−−1.
X(t)=
\begin{cases}
0 & A=0,B=0,\\
1 & A=0,B=1,\\
-1 & A=0,B=-1,\\
t & A=1,\\
-t & A--1.
\end{cases}
X(t)=⎩⎨⎧01−1t−tA=0,B=0,A=0,B=1,A=0,B=−1,A=1,A−−1.
(2)
P(X(1)=1)=49P(X(2)=1)=19P(X(1)=1,X(2)=1)=19
P(X(1)=1)=\frac{4}{9}\\
P(X(2)=1)=\frac{1}{9}\\
P(X(1)=1,X(2)=1)=\frac{1}{9}
P(X(1)=1)=94P(X(2)=1)=91P(X(1)=1,X(2)=1)=91
4、设Z(t)=AXt+1−A,t≥0Z(t)=AXt+1-A,t\geq 0Z(t)=AXt+1−A,t≥0,这里A和X相互独立,P(A=0)=P(A=1)=12P(A=0)=P(A=1)=\frac{1}{2}P(A=0)=P(A=1)=21,X~ N(1,1).
(1)计算P(Z(1)<1),P(Z(2)<2),P(Z(1)<1,Z(2)<2);P(Z(1)<1),P(Z(2)<2),P(Z(1)<1,Z(2)<2);P(Z(1)<1),P(Z(2)<2),P(Z(1)<1,Z(2)<2);
(2)计算μZ(t),RZ(s,t)\mu_Z(t),R_Z(s,t)μZ(t),RZ(s,t)
Solution
(1)P(Z(1)<1)=14P(Z(2)<2)=34P(Z(1)<1,Z(2)<2)=14
(1)P(Z(1)<1)=\frac{1}{4}\\
P(Z(2)<2)=\frac{3}{4}\\
P(Z(1)<1,Z(2)<2)=\frac{1}{4}
(1)P(Z(1)<1)=41P(Z(2)<2)=43P(Z(1)<1,Z(2)<2)=41
(2)
RZ(s,t)=E(Z(s)Z(t))=E[A2X2st+A(1−A)X(s+t)+(1−A)2]=stEA2EX2+(s+t)E[A(1−A)]EX+E(1−A)2=st+12
\begin{align}
R_Z(s,t)&=E(Z(s)Z(t))\notag\\
&=E[A^2X^2st+A(1-A)X(s+t)+(1-A)^2]\notag\\
&=stEA^2EX^2+(s+t)E[A(1-A)]EX+E(1-A)^2\notag\\
&=st+\frac{1}{2}\notag
\end{align}
RZ(s,t)=E(Z(s)Z(t))=E[A2X2st+A(1−A)X(s+t)+(1−A)2]=stEA2EX2+(s+t)E[A(1−A)]EX+E(1−A)2=st+21
5、独立重复投掷一颗均匀的骰子,用ZnZ_nZn表示前n次中掷出6点的次数
(1)计算P(Z2=1,Z5=3,Z7=5)P(Z_2=1,Z_5=3,Z_7=5)P(Z2=1,Z5=3,Z7=5);
(2)求P(Z18000>2900)P(Z_{18000}>2900)P(Z18000>2900)的近似值
(3)若掷骰子一直到刚好出现20次6点为止,问需掷多于180次的概率近似为多少.
Solution
(1)
P(Z2=1,Z5=3,Z7=5)=P(Z7=5∣Z5=3,Z2=1)P(Z5=3∣Z2=1)P(Z2=1)=P(Z2=2)P(Z3=2)P(Z2=1)=2546656
\begin{align}
&P(Z_2=1,Z_5=3,Z_7=5)\notag\\
&=P(Z_7=5 |Z_5=3,Z_2=1)P(Z_5=3 |Z_2=1)P(Z_2=1)\notag\\
&=P(Z_2=2)P(Z_3=2)P(Z_2=1)\notag\\
&=\frac{25}{46656}\notag
\end{align}
P(Z2=1,Z5=3,Z7=5)=P(Z7=5∣Z5=3,Z2=1)P(Z5=3∣Z2=1)P(Z2=1)=P(Z2=2)P(Z3=2)P(Z2=1)=4665625
(2)
EZ18000=3000,VarZ18000=2500P(Z18000>2900)=P(Z18000−30002500>2900−30002500)≈1−Φ(−2)≈0.9772
\begin{align}
&EZ_{18000}=3000,VarZ_{18000}=2500\notag\\
&P(Z_{18000}>2900)\notag\\
&=P(\frac{Z_{18000}-3000}{\sqrt{2500}}>\frac{2900-3000}{\sqrt{2500}})\notag\\
&\approx1-\Phi(-2)\notag\\
&\approx0.9772\notag
\end{align}
EZ18000=3000,VarZ18000=2500P(Z18000>2900)=P(2500Z18000−3000>25002900−3000)≈1−Φ(−2)≈0.9772
(3)
将问题转化为,投掷180次后点数等于6的次数小于等于19,类似第二题由中心极限定理可得:
P(Z180>19)=P(Z180−3025≤19−3025)≈Φ(−2.2)≈0.0139
\begin{align}
&P(Z_{180}>19)\notag\\
&=P(\frac{Z_{180}-30}{\sqrt{25}}\leq\frac{19-30}{\sqrt{25}})\notag\\
&\approx\Phi(-2.2)\notag\\
&\approx0.0139\notag
\end{align}
P(Z180>19)=P(25Z180−30≤2519−30)≈Φ(−2.2)≈0.0139
1379





