在寻找未访问过的最小的 d[u] 时, 未优化的dijkstra算法的寻找方法是遍历d数组, 而采用堆优化的dijkstra算法是创建一个优先队列, 每次取队首元素,即所要寻找的d[u], 时间复杂度上比起未优化的要强太多。
#include <iostream>
#include <cstring>
#include <queue>
#include <algorithm>
#include <cstdio>
using namespace std;
const int maxn = 1e6 + 10;
const int inf = 1e9 + 7;
const int mod = 1e5 + 3;
int head[maxn], d[maxn];
bool vis[maxn];
int num[maxn];
int n, m, cnt;
struct node{
int v, nex, len;
}edge[maxn * 2];
struct Node{
int id, dis;
friend bool operator < (Node x, Node y) {
return x.dis > y.dis;
}
Node(int _id = 0, int _dis = 0) {
id = _id, dis = _dis;
}
};
void addedge(int u, int v, int len)
{
edge[cnt].v = v;
edge[cnt].nex = head[u];
edge[cnt].len = len;
head[u] = cnt++;
}
void init()
{
memset(head, -1, sizeof(head));
}
int main()
{
ios::sync_with_stdio(false);
init();
int s, t;
cin >> n >> m;
s = 1;
int x, y, z;
for(int i = 1; i <= m; i++) {
cin >> x >> y;
addedge(x, y, 1);
addedge(y, x, 1);
}
fill(d, d + maxn, inf);
d[s] = 0;
priority_queue<Node>que;
que.push(Node(s, 0));
num[s] = 1;
while(!que.empty()) {
Node cur = que.top();
que.pop();
int u = cur.id;
if(vis[u])
continue;
vis[u] = true;
for(int i = head[u]; i != -1; i = edge[i].nex) {
int v = edge[i].v;
if(vis[v] == false && d[u] + edge[i].len < d[v]) {
d[v] = d[u] + edge[i].len;
que.push(Node(v, d[v]));
num[v] = num[u];
num[v] %= mod;
}
else if(vis[v] == false && d[u] + edge[i].len == d[v])
num[v] += num[u], num[v] %= mod;
}
}
for(int i = 1; i <= n; i++)
cout << num[i] << endl;
return 0;
}