【leetcode】Interleaving String

from:https://leetcode.com/problems/interleaving-string/

Given s1s2s3, find whether s3 is formed by the interleaving of s1 and s2.

For example,
Given:
s1 = "aabcc",
s2 = "dbbca",

When s3 = "aadbbcbcac", return true.
When s3 = "aadbbbaccc", return false.

思路:

DP:


dp[a][b]意义,sa[0:a]sb[0:b]是否能构成s[0:a+b]相等。(左开右闭)

例如,dp[1][0]= true,表示sa中子串“a”和b中“”可以构成s中“a”相等。

dp[1][1],表示“a”与“d”是否能表示成“aa”。


递推公式:

对于k=a+b,

(1)当sa[a-1]=s[k-1],那么dp[a][b] = dp[a][b] || dp[a-1][b]

(2)当sb[b-1]=s[k-1],那么dp[a][b] = dp[a][b] || dp[a][b-1]

对于(1),当sa中的字符对应了当前的s中的字符,那么dp[a][b]与dp[a][b-1]无关,因为对于s[0,a+b],只能由s[0, a+b-1]和一个sa中字符或者sb中字符匹配,如果选择了s[0,a+b]选择与sa[a-1]中字符匹配,那么其之前的s[0, a+b-1]必然没有选择sa[a-1]。


public class Solution {
    public boolean isInterleave(String sa, String sb, String s) {
        int la=sa.length(), lb=sb.length(), ls=s.length();
        if(la + lb != ls) {
            return false;
        }
        boolean[][] dp = new boolean[la+1][lb+1];
        dp[0][0] = true;
        for(int a=1; a<=la; ++a) {
            if(sa.charAt(a-1) == s.charAt(a-1)) dp[a][0] = true;
            else break;
        }
        for(int b=1; b<=lb; ++b) {
            if(sb.charAt(b-1) == s.charAt(b-1)) dp[0][b] = true;
            else break;
        }
        
        for(int a=1; a<=la; ++a) {
            for(int b=1; b<=lb; ++b) {
                int k = a+b;
				if(sa.charAt(a-1) == s.charAt(k-1)) dp[a][b] = dp[a-1][b] || dp[a][b];
				if(sb.charAt(b-1) == s.charAt(k-1)) dp[a][b] = dp[a][b-1] || dp[a][b];
            }
        }
        return dp[la][lb];
    }
}


基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合数据驱动方法与Koopman算子理论的递归神经网络(RNN)模型线性化方法,旨在提升纳米定位系统的预测控制精度与动态响应能力。研究通过构建数据驱动的线性化模型,克服了传统非线性系统建模复杂、计算开销大的问题,并在Matlab平台上实现了完整的算法仿真与验证,展示了该方法在高精度定位控制中的有效性与实用性。; 适合人群:具备一定自动化、控制理论或机器学习背景的科研人员与工程技术人员,尤其是从事精密定位、智能控制、非线性系统建模与预测控制相关领域的研究生与研究人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能预测控制;②为复杂非线性系统的数据驱动建模与线性化提供新思路;③结合深度学习与经典控制理论,推动智能控制算法的实际落地。; 阅读建议:建议读者结合Matlab代码实现部分,深入理解Koopman算子与RNN结合的建模范式,重点关注数据预处理、模型训练与控制系统集成等关键环节,并可通过替换实际系统数据进行迁移验证,以掌握该方法的核心思想与工程应用技巧。
基于粒子群算法优化Kmeans聚类的居民用电行为分析研究(Matlb代码实现)内容概要:本文围绕基于粒子群算法(PSO)优化Kmeans聚类的居民用电行为分析展开研究,提出了一种结合智能优化算法与传统聚类方法的技术路径。通过使用粒子群算法优化Kmeans聚类的初始聚类中心,有效克服了传统Kmeans算法易陷入局部最优、对初始值敏感的问题,提升了聚类的稳定性和准确性。研究利用Matlab实现了该算法,并应用于居民用电数据的行为模式识别与分类,有助于精细化电力需求管理、用户画像构建及个性化用电服务设计。文档还提及相关应用场景如负荷预测、电力系统优化等,并提供了配套代码资源。; 适合人群:具备一定Matlab编程基础,从事电力系统、智能优化算法、数据分析等相关领域的研究人员或工程技术人员,尤其适合研究生及科研人员。; 使用场景及目标:①用于居民用电行为的高效聚类分析,挖掘典型用电模式;②提升Kmeans聚类算法的性能,避免局部最优问题;③为电力公司开展需求响应、负荷预测和用户分群管理提供技术支持;④作为智能优化算法与机器学习结合应用的教学与科研案例。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,深入理解PSO优化Kmeans的核心机制,关注参数设置对聚类效果的影响,并尝试将其应用于其他相似的数据聚类问题中,以加深理解和拓展应用能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值