戳一戳 ->青蛙的约会
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
Sample Input
1 2 3 4 5Sample Output
4
昨天的比赛感觉自己咋这么菜呢??
考的全不会!
扎心了!
解释:
1.两只青蛙相遇,会有[(x-y)+k(m-n)]%l=0;(k表示跳的次数)。【方程来源】
2.将(x-y)记为A,(m-n)记为B,即(A+kB)%l=0,(A+kB)对l取余等于零可以等价为(A+kB)减去y个l等于零,即(A+kB)-yl=0,移项得kB-yl=-A。【方程】
3.将k换为x,得到xB-yl=A(由于将-A变成了A,在开始赋值时若B=m-n,A就为y-x,若B=n-m,A就为x-y),然后判断是否有解:令d为B与l的最大公约数gcd(B,l);方程两边同时除以d,得到
了xB/d-yl/d=A/d,由于d=gcd(B,l),所以B/d、l/d为整数,然后x、-y也是整数,所以方程成立的条件就是A/d也为整数。【证明方程成立】
4.这个方程就是扩展欧几里得exgcd(B,l,x,y)(忽略y前的负号),这样可以解出x,此时的x不是最优解,还要转换,即((x*(A/d))%(l/d)+(l/d))%(l/d)【求最小解的式子,不理解先背下来】
#include<iostream>
#include<cstdio>
using namespace std;
long long exgcd(long long a,long long b,long long &x,long long &y)
{
if(b == 0)
{
x = 1;
y = 0;
return a;
}
long long r = exgcd(b,a%b,x,y);
long long cnt = x;
x= y;
y = cnt - a/b * y;
return r;
}
int main()
{
long long n,m,x,y,l;
cin>>x>>y>>m>>n>>l;
long long a = x- y;
long long b = n - m;
if(b < 0)
{
b = -b;
a = -a;
}
long long k =exgcd(b,l,x,n);
if(a % k != 0)
printf("Impossible");
else
printf("%lld",((x*(a/k))%(l/k) + l/k)%(l/k));
}

231

被折叠的 条评论
为什么被折叠?



