机器学习数据不平衡处理之SMOTE算法实现

网上关于数据不平衡处理的讨论有很多,大致来说,数据不平衡的处理方法有三种:一是欠采样,二是过采样,三是调整权重。

今天要说的是过采样中的一个算法SMOTE。在网上找到一个Python库imbalance-learn package 。它是专门用来处理数据不平衡的,网址在这:https://pypi.python.org/pypi/imbalanced-learn#id27
安装说明安装之后就可以使用了,下面是一个简单的例子:

import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.decomposition import PCA
import numpy as np
import pandas as pd

from imblearn.combine import SMOTEENN

print(__doc__)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值