算法思路:动态规划
状态转移方程:score[i][j] = max{score[i + 1][j], score[i][j + 1], score[i][j * k]}, k > 1。
具体实现:采用递推的方法,先单独考虑边界值,接下来内层的方格用一个两层循环递推。
//模板开始
#include <string>
#include <vector>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <fstream>
#include <map>
#include <set>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include<iomanip>
#include<string.h>
#define SZ(x) (int(x.size()))
using namespace std;
int toInt(string s){
istringstream sin(s);
int t;
sin>>t;
return t;
}
template<class T> string toString(T x){
ostringstream sout;
sout<<x;
return sout.str();
}
typedef long long int64;
int64 toInt64(string s){
istringstream sin(s);
int64 t;
sin>>t;
return t;
}
template<class T> T gcd(T a, T b){
if(a<0)
return gcd(-a, b);
if(b<0)
return gcd(a, -b);
return (b == 0)? a : gcd(b, a % b);
}
//模板结束(通用部分)
#define ifs cin
#define MAX_ROW 25
#define MAX_COL 1005
int cases;
int n, m;
int data[MAX_ROW][MAX_COL];
int score[MAX_ROW][MAX_COL];
void dp()
{
score[n][m] = data[n][m];
for(int i = n - 1; i >= 1; i--)
{
score[i][m] = score[i + 1][m] + data[i][m];
}
for(int j = m - 1; j >= 1; j--)
{
score[n][j] = score[n][j + 1] + data[n][j];
}
for(int i = n - 1; i >= 1; i--)
{
for(int j = m - 1; j >= 1; j--)
{
score[i][j] = score[i + 1][j] + data[i][j];
if(score[i][j + 1] + data[i][j] > score[i][j])
{
score[i][j] = score[i][j + 1] + data[i][j];
}
for(int k = 2; k * j <= m; k++)
{
if(score[i][k * j] + data[i][j] > score[i][j])
{
score[i][j] = score[i][k * j] + data[i][j];
}
}
}
}
}
//【练习09】简单动态规划 1003 Super Jumping! Jumping! Jumping!
int main()
{
//ifstream ifs("shuju.txt", ios::in);
ifs>>cases;
for(int i = 0; i < cases; i++)
{
ifs>>n>>m;
for(int j = 1; j <= n ; j++)
{
for(int k = 1; k <= m; k++)
{
ifs>>data[j][k];
}
}
dp();
cout<<score[1][1]<<endl;
}
return 0;
}