余弦相似度、特征距离、KL散度计算
import torch
feat1 = torch.randn((3, 4))
feat2 = torch.randn((3, 4))
# ==========cosine相似度===============
a_norm = torch.linalg.norm(feat1, dim=1)
b_norm = torch.linalg.norm(feat2, dim=1)
cos = ((feat1 * feat2).sum(dim=(-2, -1)) / (a_norm * b_norm)).mean()
cos = 0.5 * cos + 0.5 # [-1, 1] --> [0, 1]
# ==========矩阵范数===============
lfro = torch.linalg.norm(feat1 - feat2, dim=-1).mean() # F范数
l1 = torch.linalg.norm(feat1 - feat2, dim=-1, ord=1).mean()
linf_max = torch.linalg.norm(feat1 - feat2, dim=-1, ord=float('inf')).mean()
linf_min = torch.linalg.norm(feat1 - feat2, dim=-1, ord=-float('inf')).mean()
# ==========KL散度===============
kl = torch.nn.functional.kl_div(feat1.softmax(dim=-1).log(), feat2.softmax(dim=-1), reduction='batchmean') # 'mean'
kl2 = torch.nn.functional.kl_div(feat1.softmax(dim=-1).log(), feat2.softmax(dim=-1), reduction='sum')
若为三维矩阵:batch * channel * feature,则
import torch
feat1 = torch.randn((2, 3, 4))
feat2 = torch.randn((2, 3, 4))
# ==========cosine相似度===============
a_norm = torch.linalg.norm(feat1, dim=(-2, -1))
b_norm = torch.linalg.norm(feat2, dim=(-2, -1))
cos = ((feat1 * feat2).sum(dim=(-2, -1)) / (a_norm * b_norm)).mean()
cos = 0.5 * cos + 0.5 # [-1, 1] --> [0, 1]
# ==========矩阵范数===============
lfro = torch.linalg.norm(feat1 - feat2, dim=(-2, -1)).mean() # F范数
l1 = torch.linalg.norm(feat1 - feat2, dim=(-2, -1), ord=1).mean()
linf_max = torch.linalg.norm(feat1 - feat2, dim=(-2, -1), ord=float('inf')).mean()
linf_min = torch.linalg.norm(feat1 - feat2, dim=(-2, -1), ord=-float('inf')).mean()
# ==========KL散度===============
kl = torch.nn.functional.kl_div(feat1.softmax(dim=-1).log(), feat2.softmax(dim=-1), reduction='batchmean') # 'mean'
kl2 = torch.nn.functional.kl_div(feat1.softmax(dim=-1).log(), feat2.softmax(dim=-1), reduction='sum')