一、环境准备
Linux: ubuntu-16.04-desktop-amd64
CUDA:cuda-repo-ubuntu1504-7-5-local_7.5-18_amd64.deb
二、安装步骤
1.安装必要的环境
sudo apt-get update #更新软件列表
sudo apt-get upgrade #更新软件
sudo apt-get install build-essential #安装build essentials
2.安装CUDA
sudo dpkg -i cuda-repo-ubuntu1504-7-5-local_7.5-18_amd64.deb
3.安装必要的库
A:
sudo apt-get install -y libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev protobuf-compiler gfortran libjpeg62 libfreeimage-dev libatlas-base-dev git python-dev python-pip libgoogle-glog-dev libbz2-dev libxml2-dev libxslt-dev libffi-dev libssl-dev libgflags-dev liblmdb-dev python-yaml
B:
sudo easy_install pillow
4.下载caffe
cd ~
git clone https://github.com/BVLC/caffe.git
5.安装python相关的依赖库
cd caffe
cat python/requirements.txt | xargs -L 1 sudo pip install
6.增加符号链接:
sudo ln -s /usr/include/python2.7/ /usr/local/include/python2.7
sudo ln -s /usr/local/lib/python2.7/dist-packages/numpy/core/include/numpy/ /usr/local/include/python2.7/numpy
7.修改Makefile.config配置文件
在~/caffe目录下:
A
先将Makefile.config.example复制为Makefile.config
cp Makefile.config.example Makefile.config
B
去掉 # CPU_ONLY: = 1 的注释
用gedit打开Makefile.config(或者直接用vim在终端中打开修改也可以)
gedit Makefile.config
结果如下图:
C
修改PYTHON_INCLUDE路径
把
/usr/lib/python2.7/dist-packages/numpy/core/include
改为:
/usr/local/lib/python2.7/dist-packages/numpy/core/include
如图:
D
如果没有 hdf5,安装一下,如果有了,就跳过安装
安装hdf5
sudo apt-get install libhdf5-dev
添加hdf5库文件
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/
如图:
8.编译caffe
在caffe目录下面:
make pycaffe
make all
make test
可以编译成功,caffe基本上就已经安装成功了。
9.使用MNIST手写数据集测试,训练数据模型
A
cd ~/caffe (or whatever you called your Caffe directory)
./data/mnist/get_mnist.sh
./examples/mnist/create_mnist.sh
B
编辑examples/mnist文件夹下的lenet_solver.prototxt文件,将solver_mode模式从GPU改为CPU。
C
训练模型
./examples/mnist/train_lenet.sh
三、总结
到这一步,大功告成了!
A.下载文件太多,太大,太慢
B.步骤麻烦
C.以此文档做为记录
四、参考资料
http://blog.youkuaiyun.com/hjl240/article/details/51460884