目标检测中的IOU

IOU是衡量目标检测中预测框与真实框重叠程度的指标,具有尺度不变性。它用于评估模型预测准确性,也可用于正负样本区分、损失函数优化和NMS筛选。本文介绍了IOU的概念、应用场景,并提供了代码示例。

什么是IOU?

简单来说IOU就是用来度量目标检测中预测框与真实框的重叠程度。在图像分类中,有一个明确的指标准确率来衡量模型分类模型的好坏。其公式为:
在这里插入图片描述
这个公式显然不适合在在目标检测中使用。我们知道目标检测中都是用一个矩形框住被检测物体,又因为检测物体尺度不同,预测框与真实框或大或小。所以度量标准必然是具有尺度不变性的,那么大神们就引入了一个概念IOU(交并比),用预测框(A)和真实框(B)的交集除上二者的并集,其公式为:
在这里插入图片描述
在这里插入图片描述

显而易见,IOU的值越高也说明A框与B框重合程度越高,代表模型预测越准确。反之,IOU越低模型性能越差。

IOU应用场景

除了作为目标检测的评价指标,IOU还有其他应用场景:

  • 1.在anchor-based方法的目标检测中,根据IOU的值来区分正样本和负样本。
  • 2.可以直接作为边界框回归的loss函数进行优化。
  • 3.在NMS(非极大值抑制)对预测框筛选。

参考:目标检测中的IoU、GIoU、DIoU与CIoU

写代码调试

说了这么多,关键还得写代码调试看看
python代码

example1

import numpy as np

def IoU(box1, box2):
    b1_x1, b1_y1, b1_x2, b1_y2 = box1
    b2_x1, b2_y1, b2_x2, b2_y2 = box2
    
    xx1 = np.maximum(b1_x1, b2_x1)
    yy1 = np.maximum(b1_y1, b2_y1)
    xx2 = np.minimum(b1_x2, b2_x2)
    yy2 = np.minimum(b1_y2, b2_y2)
    
    w = np.maximum(0.0, yy2 - yy1)
    h = np.maximum(0.0, xx2 - xx1)
 
    inter = w * h
    IoU = inter/((b1_x2-b1_x1)*(b1_y2-b1_y1) + (b2_x2-b2_x1)*(b2_y2-b2_y1) - inter)
    print("IoU: ", IoU)
 
 
if __name__ == "__main__":
    box1 
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静思心远

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值