深度学习在美团配送ETA预估中的探索与实践

本文深入探讨外卖配送系统中预计送达时间(ETA)的预测模型,包括模型迭代、损失函数优化、业务规则融入及长尾问题处理,旨在提升用户体验与配送效率。

1.背景

ETA(Estimated Time of Arrival,“预计送达时间”),即用户下单后,配送人员在多长时间内将外卖送达到用户手中。送达时间预测的结果,将会以”预计送达时间”的形式,展现在用户的客户端页面上,是配送系统中非常重要的参数,直接影响了用户的下单意愿、运力调度、骑手考核,进而影响配送系统整体成本和用户体验。

对于整个配送系统而言,ETA既是配送系统的入口和全局约束,又是系统的调节中枢。具体体现在:

  • ETA在用户下单时刻就需要被展现,这个预估时长继而会贯穿整个订单生命周期,首先在用户侧给予准时性的承诺,接着被调度系统用作订单指派的依据及约束,而骑手则会按照这个ETA时间执行订单的配送,配送是否准时还会作为骑手的工作考核结果。
  • ETA作为系统的调节中枢,需要平衡用户-骑手-商家-配送效率。从用户的诉求出发,尽可能快和准时,从骑手的角度出发,太短会给骑手极大压力。从调度角度出发,太长或太短都会影响配送效率。而从商家角度出发,都希望订单被尽可能派发出去,因为这关系到商家的收入。

ETA在配送系统中作用

在这样多维度的约束之下,外卖配送的ETA的建模和估计会变得更加复杂。与打车场景中的ETA做对比,外卖场景的ETA面临如下的挑战:

  • 外卖场景中ETA是对客户履约承诺的重要组成部分,无论是用户还是骑手,对于ETA准确性的要求非常高。而在打车场景,用户更加关心是否能打到车,ETA仅提供一个参考,司机端对其准确性也不是特别在意。
  • 由于外卖ETA承担着承诺履约的责任,因此是否能够按照ETA准时送达,也是外卖骑手考核的指标、配送系统整体的重要指标;承诺一旦给出,系统调度和骑手都要尽力保证准时送达。因此过短的ETA会给骑手带来极大的压力,并降低调度合单能力、增加配送成本;过长的ETA又会很大程度影响用户体验。
  • 外卖场景中ETA包含更多环节,骑手全程完成履约过程,其中包括到达商家、商家出餐、等待取餐、路径规划、不同楼宇交付等较多的环节,且较高的合单率使得订单间的流程互相耦合,不确定性很大,做出合理的估计也有更高难度。

外卖及打车中的ETA

下图是骑手履约全过程的时间轴,过程中涉及各种时长参数,可以看到有十几个节点,其中关键时长达到七个。这些时长涉及多方,比如骑手(接-到-取-送)、商户(出餐)、用户(交付),要经历室内室外的场景转换,因此挑战性非常高。对于ETA建模,不光是简单一个时间的预估,更需要的是全链路的时间预估,同时更需要兼顾”单量-运力-用户转化率”转化率之间的平衡。配送ETA的演变包括了数据、特征层面的持续改进,也包括了模型层面一路从LR-XGB-FM-DeepFM-自定义结构的演变。

ETA的探索与演变

具体ETA在整个配送业务中的位置及配送业务的整体机器学习实践,请参看《机器学习在美团配送系统的实践:用技术还原真实世界》

2.业务流程迭代中的模型改进

2.1 基础模型迭代及选择

与大部分CTR模型的迭代路

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值