for the phd thesis

本研究提出一种贝叶斯方法进行结构控制及健康监测中的非线性动态系统的辨识与预估。该方法包含三个层级的推断:模型评估、联合状态/参数估计及噪声估计,并着重于在线同时执行这些推断。



https://academiccommons.columbia.edu/catalog/ac:208611


Probabilistic Identification and Prognosis of Nonlinear Dynamic Systems with applications in Structural Control and Health Monitoring

Thaleia Kontoroupi

Title:
Probabilistic Identification and Prognosis of Nonlinear Dynamic Systems with applications in Structural Control and Health Monitoring
Author(s):
Kontoroupi, Thaleia
Thesis Advisor(s):
Smyth, Andrew W.
Date:
2016
Type:
Theses
Degree:
Ph.D., Columbia University
Department(s):
Civil Engineering and Engineering Mechanics
Persistent URL:

Title:
Probabilistic Identification and Prognosis of Nonlinear Dynamic Systems with applications in Structural Control and Health Monitoring
Author(s):
Kontoroupi, Thaleia
Thesis Advisor(s):
Smyth, Andrew W.
Date:
2016
Type:
Theses
Degree:
Ph.D., Columbia University
Department(s):
Civil Engineering and Engineering Mechanics
Persistent URL:
https://doi.org/10.7916/D8MK6CXD
Abstract:
A Bayesian approach to system identification for structural control and health monitoring contains three main levels of inference, namely model assessment, joint state/parameter estimation and noise estimation. All of them have individually, or as a whole, been studied extensively for offline applications. In an online setting, the middle level of inference (joint state/parameter estimation) is performed using various algorithms such as the Kalman filter (KF), the extended Kalman filter (EKF), the Unscented Kalman filter (UKF), or particle filter (PF) methods. This problem has been explored in depth for structural dynamics. This dissertation focuses on the other two levels of inference, in particular on developing methods to perform them online, simultaneously to the joint state/parameter estimation. The quality of structural parameter estimates depends heavily on the choice of noise characteristics involved in the aforementioned online inference algorithms, hence the need for simultaneous online noise estimation. Model assessment, on the other hand, is an integral part of many engineering applications, since any analytical or numerical mathematical model used for predictive purposes is only an approximation of the real system. An online implementation of model assessment is valuable, amongst others, for structural control applications, and for identifying several models in parallel, some of which might be of deteriorating nature, thus generating some sort of alert. The performance of the proposed online techniques is evaluated using simulated and experimental data sets generated by nonlinear hysteretic systems. Upon completion of the study of hierarchical online system identification (diagnostic phase/estimation), a system/damage prognostic analysis (prognostic phase/prediction) is attempted using a gamma deterioration process. Prognostic analysis is still at a relatively early stage of development in the field of structural dynamics, but it can potentially provide useful insights regarding the lifetime of a dynamically excited structural system. The technique is evaluated on a data set recorded during an experiment involving a full-scale bridge pier under base excitation, tested to impending collapse.
Subject(s):
Structural analysis (Engineering)
Structural engineering
Nonlinear systems
Structural health monitoring
Engineering
Civil engineering
Mechanical engineering
Item views
95
Metadata:
text | xml
Suggested Citation:
Thaleia Kontoroupi, 2016, Probabilistic Identification and Prognosis of Nonlinear Dynamic Systems with applications in Structural Control and Health Monitoring, Columbia University Academic Commons, https://doi.org/10.7916/D8MK6CXD.

Download




https://doi.org/10.7916/D8MK6CXD
Abstract:
A Bayesian approach to system identification for structural control and health monitoring contains three main levels of inference, namely model assessment, joint state/parameter estimation and noise estimation. All of them have individually, or as a whole, been studied extensively for offline applications. In an online setting, the middle level of inference (joint state/parameter estimation) is performed using various algorithms such as the Kalman filter (KF), the extended Kalman filter (EKF), the Unscented Kalman filter (UKF), or particle filter (PF) methods. This problem has been explored in depth for structural dynamics. This dissertation focuses on the other two levels of inference, in particular on developing methods to perform them online, simultaneously to the joint state/parameter estimation. The quality of structural parameter estimates depends heavily on the choice of noise characteristics involved in the aforementioned online inference algorithms, hence the need for simultaneous online noise estimation. Model assessment, on the other hand, is an integral part of many engineering applications, since any analytical or numerical mathematical model used for predictive purposes is only an approximation of the real system. An online implementation of model assessment is valuable, amongst others, for structural control applications, and for identifying several models in parallel, some of which might be of deteriorating nature, thus generating some sort of alert. The performance of the proposed online techniques is evaluated using simulated and experimental data sets generated by nonlinear hysteretic systems. Upon completion of the study of hierarchical online system identification (diagnostic phase/estimation), a system/damage prognostic analysis (prognostic phase/prediction) is attempted using a gamma deterioration process. Prognostic analysis is still at a relatively early stage of development in the field of structural dynamics, but it can potentially provide useful insights regarding the lifetime of a dynamically excited structural system. The technique is evaluated on a data set recorded during an experiment involving a full-scale bridge pier under base excitation, tested to impending collapse.
Subject(s):
Structural analysis (Engineering)
Structural engineering
Nonlinear systems
Structural health monitoring
Engineering
Civil engineering
Mechanical engineering
Item views
95
Metadata:
text | xml
Suggested Citation:
Thaleia Kontoroupi, 2016, Probabilistic Identification and Prognosis of Nonlinear Dynamic Systems with applications in Structural Control and Health Monitoring, Columbia University Academic Commons, https://doi.org/10.7916/D8MK6CXD.

Recent developments in laser scanning technologies have provided innovative solutions for acquiring three-dimensional (3D) point clouds about road corridors and its environments. Unlike traditional field surveying, satellite imagery, and aerial photography, laser scanning systems offer unique solutions for collecting dense point clouds with millimeter accuracy and in a reasonable time. The data acquired by laser scanning systems empower modeling road geometry and delineating road design parameters such as slope, superelevation, and vertical and horizontal alignments. These geometric parameters have several geospatial applications such as road safety management. The purpose of this book is to promote the core understanding of suitable geospatial tools and techniques for modeling of road traffic accidents by the state-of-the-art artificial intelligence (AI) approaches such as neural networks (NNs) and deep learning (DL) using traffic information and road geometry delineated from laser scanning data. Data collection and management in databases play a major role in modeling and developing predictive tools. Therefore, the first two chapters of this book introduce laser scanning technology with creative explanation and graphical illustrations and review the recent methods of extracting geometric road parameters. The third and fourth chapters present an optimization of support vector machine and ensemble tree methods as well as novel hierarchical object-based methods for extracting road geometry from laser scanning point clouds. Information about historical traffic accidents and their circumstances, traffic (volume, type of vehicles), road features (grade, superelevation, curve radius, lane width, speed limit, etc.) pertains to what is observed to exist on road segments or road intersections. Soft computing models such as neural networks are advanced modeling methods that can be related to traffic and road features to the historical accidents and generates regression equat
内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值