1、问题描述:
给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?
形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。

2、最优性原理:
设(y1,y2,…,yn)是 (3.4.1)的一个最优解.则(y2,…,yn)是下面相应子问题的一个最优解:

证明:使用反证法。若不然,设(z2,z3,…,zn)是上述子问题的一个最优解,而(y2,y3,…,yn)不是它的最优解。显然有
∑vizi > ∑viyi (i=2,…,n)
且 w1y1+ ∑wizi<= c
因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)
说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的一个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,矛盾。

这篇博客介绍了0-1背包问题,通过动态规划寻找最优解。文章详细阐述了问题描述、最优子结构原理,给出了递推关系和算法的改进,以减少计算时间。通过示例展示了算法的执行过程,并讨论了算法的时间复杂性。
最低0.47元/天 解锁文章
1万+





