0040算法笔记——【分支限界法】批处理作业调度问题

本文是关于如何使用优先级队列式分支限界法来解决批处理作业调度问题的算法笔记。通过建立解空间树,定义限界函数和算法描述,寻找最小完成时间和的作业调度方案。在算法中,使用最小堆表示活节点优先队列,并通过Bound函数计算完成时间和的下界,从而优化调度策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      问题描述

     给定n个作业的集合{J1,J2,…,Jn}。每个作业必须先由机器1处理,然后由机器2处理。作业Ji需要机器j的处理时间为tji。对于一个确定的作业调度,设Fji是作业i在机器j上完成处理的时间。所有作业在机器2上完成处理的时间和称为该作业调度的完成时间和。

     批处理作业调度问题要求对于给定的n个作业,制定最佳作业调度方案,使其完成时间和达到最小

      例:设n=3,考虑以下实例:


     这3个作业的6种可能的调度方案是1,2,3;1,3,2;2,1,3;2,3,1;3,1,2;3,2,1;它们所相应的完成时间和分别是19,18,20,21,19,19。易见,最佳调度方案是1,3,2,其完成时间和为18。

     限界函数

     批处理作业调度问题要从n个作业的所有排列中找出具有最小完成时间和的作业调度,所以如图,批处理作业调度问题的解空间是一颗排列树     

     在作业调度问相应的排列空间树中,每一个节点E都对应于一个已安排的作业集。以该节点为根的子树中所含叶节点的完成时间和可表示为:


     设|M|=r,且L是以节点E为根的子树中的叶节点,相应的作业调度为{pk,k=1,2,……n},其中pk是第k个安排的作业。如果从节点E到叶节点L的路上,每一个作业pk在机器1上完成处理后都能立即在机器2上开始处理,即从pr+1开始,机器1没有空闲时间,则对于该叶节点L有:

注:(n-k+1)t

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值