【题目】
There are N gas stations along a circular route, where the amount of gas at station
i is gas[i].
You have a car with an unlimited gas tank and it costs cost[i] of gas to travel from station
i to its next station (i+1). You begin the journey with an empty tank at one of the gas stations.
Return the starting gas station's index if you can travel around the circuit once, otherwise return -1.
【解】算一下v[i] = gas[i] - cost[i]。如果所有v[i]的和大于等于零,就能够绕一圈。
至于从哪个起点开始,不能选v[i]最大的,因为有可能它的下一个城市v[i]很小,不能到再后面的城市。所以贪心策略是尽量最后访问v[i]小的,既然确定能够绕一圈,就相当于在之前尽可能多为后面耗油多的城市存一些油。
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
int n = gas.size();
int s = 0;
vector<int> v(n, 0);
for (int i = 0; i < n; i++) {
v[i] = gas[i] - cost[i];
s += v[i];
}
if (s < 0) return -1;
int m = v[0], index = 0;
for (int i = 0; i < n; i++) {
if (v[i] < m) {
m = v[i];
index = i;
}
}
while (v[index] < 0) {
index = (index + 1) % n;
}
return index;
}
};
本文介绍了一个算法问题:如何在一个环形路线上找到合适的起点加油站,使得车辆能够在不耗尽燃油的情况下完成一次完整的环路旅行。文章提供了一种解决方案,通过计算每个加油站的净收益,并采用贪心策略来确定最佳起点。
363

被折叠的 条评论
为什么被折叠?



