Notice that the number 123456789 is a 9-digit number consisting exactly the numbers from 1 to 9, with no duplication. Double it we will obtain 246913578, which happens to be another 9-digit number consisting exactly the numbers from 1 to 9, only in a different permutation. Check to see the result if we double it again!
Now you are suppose to check if there are more numbers with this property. That is, double a given number with k digits, you are to tell if the resulting number consists of only a permutation of the digits in the original number.
Input Specification:
Each input file contains one test case. Each case contains one positive integer with no more than 20 digits.
Output Specification:
For each test case, first print in a line "Yes" if doubling the input number gives a number that consists of only a permutation of the digits in the original number, or "No" if not. Then in the next line, print the doubled number.
Sample Input:1234567899Sample Output:
Yes2469135798
#include <iostream> #include <cstdio> using namespace std; int main(void) { char num[21]; scanf("%s", num); int digit[10] = {0}; int i = 0; for (; num[i]; ++i) ++digit[num[i] - '0']; int j = 0, remain = 0, temp; int num1[22]; for (i = i -1; i >= 0; --i) { temp = (num[i] - '0') * 2 + remain; --digit[temp % 10]; num1[j++] = temp % 10 + '0'; remain = temp / 10; } if (remain > 0) { --digit[remain]; num1[j++] = remain + '0'; } bool isF = true; for (int i = 0; i < 10; ++i) { if (digit[i] != 0) { isF = false; break; } } if (isF) printf("Yes\n"); else printf("No\n"); for (int i = j - 1; i >= 0; --i) printf("%c", num1[i]); printf("\n"); return 0; }