LeetCode : 5091. 建造街区的最短时间

本文探讨了一个工人建造街区的最优时间策略,通过分析不同情况下的时间消耗,提出了有效的算法解决方案。通过对街区建造时间进行排序和调整,实现了最小化总建造时间的目标。

 

5091. 建造街区的最短时间

 

你是个城市规划工作者,手里负责管辖一系列的街区。在这个街区列表中 blocks[i] = t 意味着第  i 个街区需要 t 个单位的时间来建造。

由于一个街区只能由一个工人来完成建造。

所以,一个工人要么需要再召唤一个工人(工人数增加 1);要么建造完一个街区后回家。这两个决定都需要花费一定的时间。

一个工人再召唤一个工人所花费的时间由整数 split 给出。

注意:如果两个工人同时召唤别的工人,那么他们的行为是并行的,所以时间花费仍然是 split

最开始的时候只有 一个 工人,请你最后输出建造完所有街区所需要的最少时间。

 

示例 1:

输入:blocks = [1], split = 1
输出:1
解释:我们使用 1 个工人在 1 个时间单位内来建完 1 个街区。

示例 2:

输入:blocks = [1,2], split = 5
输出:7
解释:我们用 5 个时间单位将这个工人分裂为 2 个工人,然后指派每个工人分别去建造街区,从而时间花费为 5 + max(1, 2) = 7

示例 3:

输入:blocks = [1,2,3], split = 1
输出:4
解释:
将 1 个工人分裂为 2 个工人,然后指派第一个工人去建造最后一个街区,并将第二个工人分裂为 2 个工人。
然后,用这两个未分派的工人分别去建造前两个街区。
时间花费为 1 + max(3, 1 + max(1, 2)) = 4

 

提示:

  1. 1 <= blocks.length <= 1000
  2. 1 <= blocks[i] <= 10^5
  3. 1 <= split <= 100

 

题解:

先把block排序,然后模仿c++的multset容器,消去最小的元素,取第二小的元素加上split再二分插入回block,最后剩下的唯一元素就是答案,本质上就是对用例解释思路的模拟,看懂用例解释思路就能看懂这种做法了。

时间复杂度O(NlogN),额外空间复杂度O(1)

第一种写法更明确,但第二种写法for循环迭代器应该会比while更快一些,第三种方法减少pop操作,可能会更快点。

class Solution:
    def minBuildTime(self, blocks: List[int], split: int) -> int:
        blocks.sort()
        while len(blocks) > 1:
            blocks.pop(0)
            bisect.insort(blocks, blocks.pop(0) + split) #系统二分插入函数
        return blocks[0]
class Solution:
    def minBuildTime(self, blocks: List[int], split: int) -> int:
        blocks.sort()
        for _ in range(1, len(blocks)):
            blocks.pop(0)
            bisect.insort(blocks, blocks.pop(0) + split)
        return blocks[0]
class Solution:
    def minBuildTime(self, blocks: List[int], split: int) -> int:
        blocks.sort()
        for i in range(1, len(blocks)):
            bisect.insort(blocks, blocks.pop(i) + split, lo = i )
        return blocks[-1]

 

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合数据驱动方法与Koopman算子理论的递归神经网络(RNN)模型线性化方法,旨在提升纳米定位系统的预测控制精度与动态响应能力。研究通过构建数据驱动的线性化模型,克服了传统非线性系统建模复杂、计算开销大的问题,并在Matlab平台上实现了完整的算法仿真与验证,展示了该方法在高精度定位控制中的有效性与实用性。; 适合人群:具备一定自动化、控制理论或机器学习背景的科研人员与工程技术人员,尤其是从事精密定位、智能控制、非线性系统建模与预测控制相关领域的研究生与研究人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能预测控制;②为复杂非线性系统的数据驱动建模与线性化提供新思路;③结合深度学习与经典控制理论,推动智能控制算法的实际落地。; 阅读建议:建议读者结合Matlab代码实现部分,深入理解Koopman算子与RNN结合的建模范式,重点关注数据预处理、模型训练与控制系统集成等关键环节,并可通过替换实际系统数据进行迁移验证,以掌握该方法的核心思想与工程应用技巧。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值