239. Sliding Window Maximum
Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
For example,
Given nums = [1,3,-1,-3,5,3,6,7]
, and k = 3.
Window position Max --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7
Therefore, return the max sliding window as [3,3,5,5,6,7]
.
Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.
Follow up:
Could you solve it in linear time?
好像剑指offer有这个题。
运用一个队列,里面只存递减的数。
从尾部进来一个数,把前面比它小的先弹出去,保证递减性。这样最大值一直在队列头部。
class Solution {
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k)
{
vector<int> ret;
if (nums.empty()) return ret;
for(int i = 0; i < nums.size(); i++)
{
int value = helper(i, k, nums);
if (i >= k - 1)
ret.push_back(value);
}
return ret;
}
private:
deque<int> maxN;
int helper(int pos, int k, vector<int>& nums)
{
if (pos >= k && nums[pos - k] == maxN.front())
{
maxN.pop_front();
}
while (!maxN.empty() && nums[pos] > maxN.back())
{
maxN.pop_back();
}
maxN.push_back(nums[pos]);
return maxN.front();
}
};