20. Valid Parentheses
Given a string containing just the characters '('
, ')'
, '{'
, '}'
, '['
and ']'
,
determine if the input string is valid.
The brackets must close in the correct order, "()"
and "()[]{}"
are
all valid but "(]"
and "([)]"
are
not.
想到用栈
class Solution {
public:
bool isValid(string s)
{
if (s.size() == 0)
return true;
stack<char> pp;
int i = 0;
while (i < s.size())
{
if (!pp.empty())
{
char k = pp.top();
if((s[i] == ']' && k == '[') || (s[i] == '}' && k == '{') || (s[i] == ')' && k == '('))
pp.pop();
else
pp.push(s[i]);
}
else if (s[i] == ']' || s[i] == ')' || s[i] == '}')
return false;
else
pp.push(s[i]);
i++;
}
return pp.empty();
}
};
22. Generate Parentheses
Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.
For example, given n = 3, a solution set is:
[ "((()))", "(()())", "(())()", "()(())", "()()()" ]
left代表还有几个( 需要插入
right 同理
class Solution {
public:
void genera(vector<string> &str, string &ss, int left, int right)
{
if (left == 0 && right == 0)
{
str.push_back(ss);
return;
}
string pp;
if (left == right && left != 0)
{
pp = ss + '(';
genera(str, pp, left - 1, right);
}
else if (left < right && left > 0)
{
pp = ss + '(';
genera(str, pp, left - 1, right);
pp = ss + ')';
genera(str, pp, left, right - 1);
}
else if(left == 0 && right != 0)
{
pp = ss + ')';
genera(str, pp, left, right - 1);
}
}
vector<string> generateParenthesis(int n)
{
vector<string> str;
string ss = "";
genera(str, ss, n, n);
return str;
}
};
32. Longest Valid Parentheses
Given a string containing just the characters
'(' and ')', find the length of the longest valid (well-formed) parentheses substring.
For "(()", the longest valid parentheses substring is "()", which has length = 2.
Another example is ")()())", where the longest valid parentheses substring is "()()", which has length = 4.
首先,想到用栈并不太难。最难的是想到往栈里面存储什么,借助20题的思路,最直白的想法是存储左括号'(',但是这样做的话,没法解决上面的问题。所以在栈里存储左括号'('的下标index。这样才能正确地计算可能的最长距离。
其次,把问题简化一下,先不找最长的括号串,先找候选括号串。什么是候选括号串呢?需要满足的第一个条件是'('和')'的数量相等(所以,上面提到了使用了栈来进行左右括号是否匹配的检查),需要满足的第二个条件是,匹配的过程中不能出现')('的情况。也就是说,某个时刻,发现有单独的')'出现了,就说明此时此刻的候选串结束了,将开始对新的候选串的检查了。
class Solution {
public:
int longestValidParentheses(string s)
{
stack<int> paranStack;
int maxLength = 0;
int lastValidIndx = 0;
for (int indx = 0; indx < s.length(); indx++)
{
if (s[indx] == '(') //遇到左括号,直接存入。
paranStack.push(indx);
else //遇到右括号,分情况讨论
{
//如果此时栈里左括号已经被消耗完了,没有额外的左括号用来配对当前的右括号了,那么当前的右括号就被单出来了,表明当前子串可以结束了,此时的右括号也成为了下一个group的分界点,此时右括号下标为index,所以下一个group的起始点为index+1,相当于skip掉当前的右括号。
if (paranStack.empty())
lastValidIndx = indx + 1;
else //如果此时栈不空,可能有两种情况,1)栈正好剩下1个左括号和当前右括号配对 2)栈剩下不止1个左括号,
{
paranStack.pop();
if (paranStack.empty()) //栈pop()之前正好剩下1个左括号,pop()之后,栈空了,此时group长度为indx-lastValidIndx
maxLength = max(maxLength, indx - lastValidIndx + 1);
else //栈有pop()之前剩下不止1个左括号,此时额外多出的左括号使得新的group形成。如()(()())中index=4时,stack中有2个左括号
maxLength = max(maxLength, indx - paranStack.top());
}
}
}
return maxLength;
}
};