Trie,又称前缀树或字典树,是一棵有根树,其每个节点包含以下字段:
指向子节点的指针数组 children。对于本题而言,数组长度为 26,即小写英文字母的数量。此时 children[0] 对应小写字母 a,children[1] 对应小写字母 b,…,children[25] 对应小写字母 z。
布尔字段 isEnd,表示该节点是否为字符串的结尾。
插入字符串
我们从字典树的根开始,插入字符串。对于当前字符对应的子节点,有两种情况:
子节点存在。沿着指针移动到子节点,继续处理下一个字符。
子节点不存在。创建一个新的子节点,记录在children 数组的对应位置上,然后沿着指针移动到子节点,继续搜索下一个字符。
重复以上步骤,直到处理字符串的最后一个字符,然后将当前节点标记为字符串的结尾。
查找前缀
我们从字典树的根开始,查找前缀。对于当前字符对应的子节点,有两种情况:
子节点存在。沿着指针移动到子节点,继续搜索下一个字符。
子节点不存在。说明字典树中不包含该前缀,返回空指针。
重复以上步骤,直到返回空指针或搜索完前缀的最后一个字符。
若搜索到了前缀的末尾,就说明字典树中存在该前缀。此外,若前缀末尾对应节点的 isEnd 为真,则说明字典树中存在该字符串。
java代码如下
public class Trie {
public Trie[] children;
public boolean isEnd;
public Trie() {
children = new Trie[26];
isEnd = false;
}
public void insert(String str) {
Trie node = this;
for (int i = 0; i < str.length(); i++) {
int index = str.charAt(i) - 'a';
if (node.children[index] == null) {
node.children[index] = new Trie();
}
node = node.children[index];
}
node.isEnd = true;
}
public boolean search(String word) {
Trie node = searchPrefix(word);
return node != null && node.isEnd;
}
public boolean startsWith(String prefix) {
return searchPrefix(prefix) != null;
}
private Trie searchPrefix(String str) {
Trie node = this;
for (int i = 0; i < str.length(); i++) {
int index = str.charAt(i) - 'a';
if (node.children[index] == null) {
return null;
}
node = node.children[index];
}
return node;
}
}