U-Net代码解读

U-Net(Convolutional Networks for Biomedical Image Segmentation)

环境配置:

  • Pytorch>=1.10
  • Ubuntu或Centos或Windows(Windows暂不支持多GPU训练)
  • 最好使用GPU训练
  • 详细环境配置见requirements.txt

文件结构:

  ├── src: 搭建U-Net模型代码
  ├── train_utils: 训练、验证以及多GPU训练相关模块
  ├── my_dataset.py: 自定义dataset用于读取DRIVE数据集(视网膜血管分割)
  ├── train.py: 以单GPU为例进行训练
  ├── train_multi_GPU.py: 针对使用多GPU的用户使用
  ├── predict.py: 简易的预测脚本,使用训练好的权重进行预测测试
  └── compute_mean_std.py: 统计数据集各通道的均值和标准差

DRIVE数据集下载地址:

训练方法

  • 确保提前准备好数据集
  • 若要使用单GPU或者CPU训练,直接使用train.py训练脚本
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十子木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值